

Technical University of Denmark

Study on the fate of BTRs and OHBTH in activated sludge and MBBR systems: Biodegradation kinetics and removal efficiencies

Aikaterini A. Mazioti¹, Athanasios S. Stasinakis¹, Henrik R. Andersen², Ypapanti Pantazi¹

¹ Department of Environment, University of the Aegean, Greece

²²Department of Environmental Engineering, Technical University of Denmark, Denmark

Uses of BTRs and BTHs

- Metal finishing industry (corrosion inhibitors)
- Brake fluids, cooling fluids, de-icing fluids
- Dishwashing detergents

- Tire and rubber manufacturing industries (vulcanization accelerators)
- Biocides and drugs
- Stabilizers in photo industry

Chemical properties

- Highly soluble in water
- Slightly basic (pKa 7.7-8.9)
- High polarity Weak tendency to sorb onto organic matter

2-Hydroxybenzothiazole

Detection in treated wastewater- EU

Micropo

Removal in WWTP-Australia

Objectives of the study

- A. To determine **biodegradation kinetics** of selected BTRs and OHBTH with batch experiments
- **B**. To investigate the role of organic substrate on kinetics
- **C**. To compare removal efficiency during **biological treatment** in lab scale systems with
 - I. suspended biomass (AS)
 - II. attached biomass (MBBR)
- D. To investigate the biodegradation potential of each biomass

Target compounds

- Benzotriazole, BTR
- Xylytriazole, XTR
- 5-chlorobenzotriazole, CBTR
- 2-hydroxy-benzothiazole, OHBTH

licropo

Analysis of BTRs/OHBTH

A. Batch experiments

Activated sludge batch experiments

11

Conditions Volume : 1 L Target compounds: 30 µg L⁻¹ MLSS: $3000 \pm 150 \text{ mg L}^{-1}$ pH: 7.35 ± 0.32 T (°C): 21.2 ± 1.8 °C Duration: 72 hours Samples: 0, 4, 8, 24, 36, 48, 72 h Triplicates

Attached biomass batch experiments

RESULTS: Biodegradation kinetics k (d⁻¹)

The proceeding to the state of the state of

	Easily degradable organic substances	k (d ⁻¹)		
Compound		AS	BC1	BC2
	absence	0.38±0.13	0.66±0.20	0.89±0.90
BTR	BTR presence 0.73±0.12	0.98±0.33	2.03±2.15	
CBTR	absence	0.54±0.06	0.41±0.37	0.64±0.30
	presence	0.83±0.24	0.48±0.56	2.43±1.64
XTR	absence	0.86±0.35	0.22±0.14	0.43±0.12
	presence	1.19± 0.54	0.49±0.61	0.53±0.46
ohbstance 0.77±0.34 presence 2.58±0.72	absence	0.77±0.34	4.74±1.62	1.82±1.06
	2.58±0.72	3.43±0.44	1.78±1.17	

RESULTS: Biodegradation kinetics k_{bio}

B. Continuous flow experiments

Systems description

sludge recirculation

HRT: 26.4±2.4 h SRT: 18 d pH: 7.2±0.4 MLSS: 2370±590 (mg L⁻¹)

HRT: 26.4±2.4 (in each reactor)

pH (BC1): 7.0±0.5 pH (BC2): 6.8±0.9

TSS (BC1): 921±81 (mg L⁻¹) TSS (BC2): 231±89 (mg L⁻¹)

Organic Load 0.247 kg m ⁻³ d⁻¹ Spike of micropollutants : 20µg L⁻¹

RESULTS: Removal during treatment

RESULTS: Potency of each biomass in removal

RESULTS: Evaluation of calculated kinetics

Kinetics calculated were used in order to predict removal in both systemsSimilar results were obtained with measured removal

CONCLUSIONS (batch experiments)

- All substances are degradated by both suspended and attached biomass
- Biodegradation constants (k_{bio}) were higher for the attached biomass in BC2
- The presence of easily degradable organic substances is clearly favoring the removal of target compounds (co-metabolism)

CONCLUSIONS (continuous flow experiments)

- All substances examined can be removed with biological treatment
- Percent removal of XTR and OHBTH was higher in the MBBR system
- Attached biomass has greater potency to remove target compounds compared to suspended biomass

FUNDING

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: **THALES**. Investing in knowledge society through the European Social Fund).

WATERMICROPOL

(www.aegean.gr/environment/watermicropol)

Water

Micropo

Thank you for your attention !!!

We Thank AnoxKaldnes for providing the carriers used in the experiments

Technical University of Denmark

Study on the fate of BTRs and OHBTH in activated sludge and MBBR systems: Biodegradation kinetics and removal efficiencies

Aikaterini A. Mazioti¹, Athanasios S. Stasinakis¹, Henrik R. Andersen², Ypapanti Pantazi¹

¹ Department of Environment, University of the Aegean, Greece

²²Department of Environmental Engineering, Technical University of Denmark, Denmark

Supplementary Material

REFERENCES

Mazioti A.A, Stasinakis A.S., Gatidou G., Thomaidis N. S., Andersen H. R. Sorption and biodegradation of selected benzotriazoles and hydroxybenzothiazole in activated sludge and estimation of their fate during wastewater treatment (2015) Chemosphere, 131, 117-123

Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R.H., Schwesig, D., Gawlik, B.M. (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents .Water Research, 47, 6475-6487

Liu Y.-S., Ying G.-G., Shareef A., Kookana R.S. (2012). Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environmental Pollution *165*, 225–232

Loos, R., Gawlik, B.M., Locoro, G., Rimaviciute, E., Contini, S., Bidoglio, G. (2009) EU-wide survey of polar organic persistent pollutants in European river waters Environmental Pollution, 157, 561-568.

Biodegradation kinetics $k_{bio} (L g_{ss}^{-1} d^{-1})$

	Easily degradable	$k_{bio} (L g_{ss}^{-1} d^{-1})$		
Compound	organic substances	AS	BC1	BC2
BTR	absence	0.22±0.08	0.44±0.13	2.25±2.28
	presence	0.41± 0.07	0.65±0.22	5.13±5.44
CBTR	absence	0.33±0.04	0.27±0.24	1.62±0.76
	presence	0.49±0.14	0.32±0.37	6.14±4.15
XTR	absence	0.39±0.16	0.15±0.09	1.09±0.30
	presence	0.52±0.24	0.32±0.40	1.34±1.16
oHBTHabsence0.40±0.17presence1.29±0.36	absence	0.40±0.17	3.13±1.07	4.60±2.68
	2.26±0.29	4.50±2.96		

Distribution in dissolved/particulate phase

Time (h)

Compound	$K_d (L Kg^{-1})$	R ²
BTR	220 (± 9)	0.993
4TTR	170 (± 48)	0.870
5TTR	165 (± 14)	0.979
CBTR	242 (± 5)	0.998
XTR	87 (± 17)	0.930
OHBTH	147 (± 29)	0.893

Sorption Coefficients