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Abstract Artificial neural networks (ANNs) show a significant ability to discover pat-

terns in data that are too obscure to go through standard statistical methods. Data of natural

phenomena usually exhibit significantly unpredictable non-linearity, but the robust

behavior of a neural network makes it perfectly adaptable to environmental models such as

a wildland fire danger rating system. These systems have been adopted by many developed

countries that have invested in wildland fire prevention, and thus civil protection agencies

are able to identify areas with high probabilities of fire ignition and resort to necessary

actions. Since one of the drawbacks of ANNs is the interpretation of the final model in

terms of the importance of variables, this article presents the results of sensitivity analysis

performed in a back-propagation neural network (BPN) to distinguish the influence of each

variable in a fire ignition risk scheme developed for Lesvos Island in Greece. Four different

methods were utilized to evaluate the three fire danger indices developed within the above

scheme; three of the methods are based on network’s weights after the training procedure

(i.e., the percentage of influence—PI, the weight product—WP, and the partial deriva-

tives—PD methods), and one is based on the logistic regression (LR) model between BPN

inputs and observed outputs. Results showed that the occurrence of rainfall, the 10-h fuel

moisture content, and the month of the year parameter are the most significant variables of

the Fire Weather, Fire Hazard, and Fire Risk Indices, respectively. Relative humidity,

elevation, and day of the week have a small contribution to fire ignitions in the study area.

The PD method showed the best performance in ranking variables’ importance, while

performance of the rest of the methods was influenced by the number of input parameters

and the magnitude of their importance. The results can be used by local forest managers

and other decision makers dealing with wildland fires to take the appropriate preventive

measures by emphasizing on the important factors of fire occurrence.
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1 Introduction

Forest fires are complicated events that take place as a result not only of natural processes

but also due to human factors. Wildland fire danger estimation systems have been

developed by many countries meeting fire problems to manage these complicated phe-

nomena (Viegas et al. 1999). The knowledge acquired through these systems enables civil

protection agencies to define and identify high-level risk areas and plan the necessary

preventive and control actions (Deeming et al. 1977; Hoffmann et al. 1999; Taylor and

Alexander 2006; Van Wagner 1987). The majority of these systems adopt different

approaches with regard to their spatial and temporal resolution (see, e.g., Yuan 1997), as

well as the correlation of their input parameters (Viegas et al. 1999). Spatial data that are

taken into consideration in identifying wildland fire pattern occurrence are often collected,

managed, analyzed, and presented with Geographic Information Systems—GIS (e.g., Chou

1992a; Chuvieco and Congalton 1989; Preisler et al. 2004).

Wildland fire danger evaluation is an integration of weather, topography, vegetative

fuel, and socioeconomic input variables to produce numeric indices of fire potential outputs

(Andrews et al. 2003; Pyne et al. 1996). Various quantitative methods have been explored

for the correlation of the input variables in fire danger assessment; most of these methods

include the input variable’s importance as a direct or indirect output. For example, some

fire studies are based on the selective weighting that relies on expert opinion regarding

input’s importance (see Salas and Chuvieco 1994), and other studies are based on multi-

criteria analysis where experts proceed to a pair-wise comparison among the inputs using a

relative importance scale (Alcázar et al. 1998). Alternatively, to subjective weighting of

inputs, statistical methods were widely used for obtaining the expression of fire danger

calculation. More specifically, linear and logistic regression techniques were proposed, so

the coefficients of the models reflect the influence of inputs on fire danger (Chou 1992b;

Chou et al. 1993; Kalabokidis et al. 2007; Vasconcelos et al. 2001).

Artificial neural networks (ANNs) have been also used in fire ignition risk estimation

(Chuvieco et al. 1999b; Vasconcelos et al. 2001; Vasilakos et al. 2007; Vega-Garcı́a et al.

1996). The ANNs are particularly useful for pattern recognition and for modeling complex

problems for which the explicit form of the relationships among certain variables is not

known (Fausett 1994). The development of ANNs began over 50 years ago as a result of

scientists’ attempt to better comprehend the human brain and simulate some of its abilities.

Traditional applications of ANNs include classification, noise reduction, and prediction

(Masters 1993). An ANN is characterized by its architecture, its training algorithm, and its

activation function. In general, an ANN consists of processing elements called neurons or

nodes organized in layers. Every node is connected to other nodes to form a network, and

every connection link has an associated weight. These weights represent the information

that is stored in an ANN during the training process. The nodes receive inputs from other

nodes or model’s input values. Then, the output of each node is computed as a function—

so-called activation function—of the weighted sum of its inputs according to Eq. 1:

yi ¼ f
X

j

wijyj

 !
ð1Þ
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where yi is the output value of the node, wji is the connection weight from node j to node i,
and yj is the output value of node j. During training, the ANN initiates the learning process

through the random values of its weights and by using a set of input and output values. The

computed output is then compared with the actual output value and the weights are cor-

rected so as to minimize the error function. The same process is repeated many times so

that the error is gradually diminished until it becomes small and tolerable. To ensure that

the trained network will approximate target values that are not included in the training data

set, a validation dataset is used which includes cases that are not used in training. At the

same time, at least one validation dataset is used and the training is stopped when the error

starts to increase in the validation dataset, despite the fact that the error could still be

decreasing in the training set. This is an indication that the network has a good general-

ization and an over-fitting to the training dataset has been avoided (Bishop 1995).

One of the disadvantages of the ANNs is the interpretation of the output model to find

out the most important variables that affect the model’s output. Contrary to the statistical

methods, e.g., regression, where the influence of each independent variable is expressed by

the estimated coefficients of the model, ANN’s output model cannot be explained directly.

Hence, ANNs have been characterized as a ‘‘black box’’ (Andersson et al. 2000; Howes

and Crook 1999; Olden and Jackson 2002; Papadokonstantakis et al. 2006). Previous

research on wildfire risk estimation with ANNs is limited to predictability results of the

output model or to utilizing methods other than the methods presented and compared here.

An operational fire ignition risk system might predict where and when a fire may start, but

why a fire starts at a specific place and time is still not predictable, especially in a complex

human–natural environment. For example, negligence or arson causative factors require

potential human presence; and factors of human presence include urban areas, road net-

work, and agricultural fields among others. The way that these factors influence wildfire

ignition at a specific place is barely answered by prediction models.

The aim of this research was the evaluation of the significance of input variables in a

Fire Ignition Index (FII) subsystem by comparing four different methods, as part of a fire

danger rating system analyzed by Vasilakos et al. (2007). The outputs of these method-

ologies could be useful in quantitative fire danger rating of the study area, because forest

fire management may be focused on preventive measures aiming at decreasing fire igni-

tions, such as proper legislation regarding property land development and law enforcement,

personnel and volunteers’ training, technological engineering, as well as staffing for fire

control.

Several methods have been applied to examine the input’s influence in a trained ANN.

Howes and Crook (1999) proposed, among others, the ‘‘general influence’’ method of each

input to be used as a parameter based on the analysis of network’s weights, similarly to a

method introduced by Yoon et al. (1994). Both the above methods are closely related to

Garson’s algorithm (1991) and the ‘‘weight product’’ (WP) method by Tchaban et al.

(1998) that are used in the present research. The ‘‘general influence’’ method was also used

in a comparison review by Papadokonstantakis et al. (2006), along with the method pro-

posed by Nord and Jacobsson (1998)—which sequentially zeroes the weights of each input

variable to measure the impact on the network response—and the automatic relevance

determination method that is based on a probabilistic interpretation of the network training

procedure. Montano and Palmer (2003) proposed numeric sensitivity analysis, based on the

calculation of the slopes between inputs and outputs; Özesmi and Özesmi (1999) followed

a different approach than numerical, based on the visual interpretation of the connection

weights among neurons. Our research also uses the method of partial derivatives (PD) of

neural network’s response with respect to each input. This method has shown an adequate
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performance in real case studies by Dimopoulos et al. (1995) and Ibarra et al. (2003) and in

comparisons with other methods. More specifically, PD were applied on simulated data by

Gevrey et al. (2003), Montano and Palmer (2003), and Olden et al. (2004). Chuvieco et al.

(1999b) in their ANN approach of fire ignitions replaced the original values of each input

variable by random values, after the network training. It was assumed that an increase in

the root mean square error, produced by the changed values of each variable, reflected its

high significance.

2 Data and methodology

2.1 Study area

The island of Lesvos is located in the northeastern Aegean Sea of Greece and covers an

area of 1,636 km2 with a variety of geological formations, climatic conditions, and veg-

etation types (Fig. 1). The climate is Mediterranean, with warm and dry summers and mild

and moderately rainy winters. Annual precipitation average is 670 mm; the average annual

air temperature is 18�C with high oscillations between maximum and minimum daily

temperatures. The terrain is rather hilly and rough, with a highest peak of 960 m a.s.l.

Slopes greater than 20% are dominant covering almost two-thirds of the island. The soils of

Lesvos are widely cultivated, mainly with rain-fed crops such as cereals, vines, and olives.

Due to low productivity, many sites were abandoned 40–50 years ago; after abandonment,

these areas were moderately grazed and the shrub regeneration has been occasionally

cleared by illegal burning. The vegetation of these areas, defined on the basis of the

dominant species, includes phrygana or garrigue-type shrubs in grasslands, evergreen-

Fig. 1 The study area of Lesvos Island, Greece, with wildfire occurrence (1970–2001), road network, and
urban areas
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sclerophylous or maquis-type shrubs, pine forests, deciduous oaks, olive groves, and other

agricultural lands.

More than 420 fires, mostly human caused, occurred in the period 1970–2001 resulting

in approximately 80 km2 of burned area in Lesvos Island (Fig. 1). Even though the number

of fires has been increased in recent years, the burned area has declined due to the active

fire suppression undertaken by the Greek Fire Brigade using effective tactics and some-

times heavy equipment. During the study period, 62% of wildfires of known causes

(approximately 55% of all fires) were due to human negligence; 16% arson, 10% lightning

caused, 6.5% military activities, 2.8% garbage disposal related, and 1.7% from electric

power lines.

2.2 Neural networks and ignition variables

In our previously published research (Vasilakos et al. 2007), three different neural net-

works were developed and trained to calculate three intermediate outcomes of FII: i.e., the

Fire Weather Index (FWI), the Fire Hazard Index (FHI), and the Fire Risk Index (FRI).

Weather is a critical element of the fire environment and at times has more influence than

topography and vegetation—once a threshold level of fuel presence and continuity is

reached. The weather component is included in most of the operational Fire Danger Rating

Systems, e.g., the well-known FWI of the Canadian Forest Fire Weather Index System

(Van Wagner 1987). In our research, the FWI is different than the Canadian one as it

examines the wind, humidity, temperature, and rainfall variables that are generally con-

sidered to determine fire danger potential (Schroeder and Buck 1970), and how these

parameters influence the fire ignition potential.

Fire hazards result from the interactions of biophysical factors such as vegetation and

topography (see Chen et al. 2003); these parameters are included in the FHI. Wildfire

ignition potential is strongly correlated with the quantity, size, density, quality, continuity

(all of them standardized in fuel types or models), and moisture content (i.e., the amount of

water in a fuel particle) of vegetation that determine the availability of fuel for combustion

(Andrews et al. 2003). Topography modifies the general climate over the landscape and

thereby affects fuel availability.

The FRI refers to the probability that a wildland fire will start as determined by the

presence and activities of causative agents. Human agents are of great importance in fire

risk assessment, especially in the Mediterranean countries where they are primary causes

of forest fires either by accident or arson (Henderson et al. 2005). Spatial analysis of human

risk is quite complex, due to the difficulty of spatially correlating socioeconomic activities

in the biophysical and anthropogenic environment (Chen et al. 2003; Kalabokidis et al.

2002a). The primary method used to delineate human risk has been the correlation of the

spatial distribution of fire ignition to the proximity of human activities (e.g., Chuvieco and

Congalton 1989; Chuvieco and Salas 1996; Kalabokidis et al. 2007).

The functional approach to calculate the three indices of wildfire occurrence was per-

formed through the use of a multi-layer perceptron (MLP) that had been trained with the

most widely used method for training, i.e., the back-propagation algorithm (Rumelhart and

McClelland 1986). The input parameters of the FII such as meteorological conditions,

distances from human activities, vegetation, and topography have been chosen to be easily

defined, thus enabling the system for immediate operational application on a local level.

It should be noticed also that the parameters have been chosen to reflect the wildland fire

ignition pattern based on the fire ignition causes of our study area. Table 1 analytically

presents the input variables for each index on fire weather, fire hazard, and fire risk
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assessment as defined in the fire danger evaluation scheme. The dependant variable for all

three models was binary expressed by the presence (1) or absence (0) of fire ignition.

Training and validation samples were created from the total fire history database, to be

used in the neural networks for each index. Due to the absence of daily meteorological

data, with the exception of some of doubtful credibility, fires that occurred during the

1997–2001 period (May–September) had to be used for the training of the FWI and FHI.

For the training of FRI, all the fires having occurred from May to September (1970–2001)

were used. For the simulation of the system’s operation and its better validation, fires that

occurred in 2003 were used. A final validation under operational conditions was conducted

in 2004.

To evaluate the performance of the ANNs during training, the mean square error (MSE)

function was used:

MSE ¼ 1

n

X

k

ðtk � dkÞ2 ð2Þ

where tk is the desired outcome, dk is the actual outcome in the output layer, and n is the

total number of the training sample. The logistic function that follows was used as an

activation function, which is necessary for the implementation of non-linearity in the

network:

f ðzÞ ¼ 1

1þ e�z
ð3Þ

This function approaches 1, for large positive values of z, and 0 for large negative

values of z, and is appropriate for the occurrence or non-occurrence of fires since the

dependant variable has a binary value of 0 or 1 (Jordan 1995; Sarle 1997). Moreover, the

Table 1 Description of input variables for each index

Index Input variable Type Description

FWI Air temperature C �C

Wind speed C m/s

Relative humidity C %

Rain B Rainfall in the last 24 h

FHI Fuel models C Flammability index

10-h Fuel moisture content C %

Elevation C m

Aspect C �
FRI Distance to primary road network C m

Distance to secondary road network C m

Distance to power lines C m

Distance to urban areas C m

Distance to landfills C m

Distance to recreational areas C m

Distance to agricultural land C m

Month C % of total fire ignitions

Day of the week B Weekend or weekday

FWI Fire Weather Index, FHI Fire Hazard Index, FRI Fire Risk Index, C continuous, B binary, D discrete
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use of this continuous, differentiable, and monotonically non-decreasing function as the

activation function allows for the interpretation of the result as a probability (Bishop 1995;

Hampshire and Pearlmutter 1990). The logistic function was also used in the output

neurons to avoid effects from noisy data that do not conform to the identity function or any

other linear function (Masters 1993). Multiple tests were performed to select the final

structure of the neural networks for each index. For all three networks, one hidden layer

was selected with 6, 4, and 8 hidden nodes for FWI, FHI, and FRI, respectively, while a

second hidden layer induced the problem of local minima. In addition, the MSE of the

training and the validation datasets was monitored during training; the process was con-

tinued until the MSE of the training or the validation dataset started to increase. A learning

rate r = 0.1 was chosen, while the output neuron was considered activated in case of an

output value above 0.5. According to the results, the FWI function was more easily

approached, whereas the FRI had better classification percentages regarding the evaluation

year of 2003.

2.3 Methods of ranking each variable’s importance

Four methods were followed to examine the contribution of each variable at the final

models: Garson’s (1991) algorithm and Tchaban et al.’s (1998) ‘‘weight product’’ were

based on connection weights after the training procedure; logistic regression was used for

ranking based on the calculated coefficients; and a ranking method based on PD of the

output was applied.

2.3.1 Garson’s algorithm

Garson (1991) proposed a method for measuring the relative importance of input variables

in a neural network based on connection weights of an already successful trained network,

while modifications of this method were presented later (Goh 1995; Howes and Crook

1999; Yoon et al. 1994). Garson’s algorithm uses the absolute values of the connection

weights; therefore, it is unknown whether an input variable has a positive or negative

impact on the output. It is based on Eq. 4 that calculates the percentage of influence Qik

(hereinafter PI) of the input variable xi on the output yk, assuming a network where w is the

connection weight between N input neurons and L hidden neurons, and u is the connection

between the hidden neurons and the output. According to the equation, the sum of per-

centages of inputs equals 100%:

Qik ¼

PL

j¼1

wij

PN
r¼1

wrj

ujk

0
B@

1
CA

PN

i¼1

PL

j¼1

wij

PN
r¼1

wrj

0
B@

1
CA

0
B@

1
CA

ð4Þ

2.3.2 Tchaban’s ‘‘weight product’’

Tchaban et al.’s (1998) ‘‘weight product’’ is a more simplified method compared to

Garson’s, and it is also based on weight magnitudes. It depends on the ratio of input
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variable xi and the calculated output yk to estimate the influence WPik by the following

equation:

WPik ¼
xi

yk

XL

j¼1

wijujk ð5Þ

According to the above equation, every input pattern returns a different ‘‘weight

product’’; thus, the arithmetic mean and the standard deviation are calculated for all the

training dataset to evaluate the influence of each input.

2.3.3 Logistic regression

The logistic regression model (LR) is considered as the most suitable method for the

probability estimation of an event to occur (e.g., fires or vegetation types) in case that the

dependant or response variable is expressed in a binary way (Hosmer and Lemeshow 1989;

Kalabokidis and Koutsias 2000; Vasconcelos et al. 2001). The logistic regression model

can be expressed with Eq. 6 (Mendenhall and Sincich 1996):

f zð Þ ¼ 1

1þ e� b0þb1x1þb2x2þ���þbixið Þ ð6Þ

where xi are the qualitative or quantitative independent variables and bi are the estimated

coefficients.

2.3.4 Partial derivatives

The importance of ANN inputs can be calculated through the PD of the network’s output

with respect to each input, and the method is considered quite efficient in measuring the

influence of variables within a neural network. By calculating the PD, the Jacobian matrix

can be evaluated to provide the sensitivity of the output as a result of small changes in the

inputs (Bishop 1995). In the present case study, the PD show how much the value of each

fire index is changing when the input variable (e.g., one of the weather variables) changes.

This method has been extensively described by Dimopoulos et al. (1995) and has been used

widely (Dedecker et al. 2005; Dimopoulos et al. 1999; Gevrey et al. 2003; Montano and

Palmer 2003; Park et al. 2007). PD depend on the input xi, the output yk, the connection

weights between inputs and hidden modes wij, the connection weights between hidden and

output nodes ujk, and the activation function. The sensitivity Sik of the output yk with

respect to input xi can be expressed through Eq. 7:

Sik ¼
oyk

oxi
¼ f 0 netkð Þ

XL

j¼1

ujkf 0 netj
� �

wij ð7Þ

where f0(netj) and f0(netk) are the derivatives of the activation function of hidden nodes and

output nodes, respectively. Under the assumption that the trained network will not be linear,

every input pattern will result in a different slope for each input vector. In order to rank the

relative contribution of each input to the output, the sum of the square partial derivatives

(SSD) per input variable was calculated. Therefore, every input variable results in one SSD

value, while high value of SSD means significant influence. The plots of the PD of the neural

network response with respect to each input variable provide a useful representation of the

influence of each input parameter, throughout its domain, to the output.
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3 Results and discussion

The scope of this article is to focus on presenting the results from sensitivity analysis to

understand each variable’s influence on the fire weather, hazard, and risk indices. The

results from the four methods are summarized in tabular form showing the magnitude of

influence for each input and in a scatter-plot format of the PD. The latter show the kind of

influence of each input on each fire potential index, i.e., positive values of PD means

positive influence and vice versa, while the magnitude of values indicates the rate of

importance. Thereby, systematic assessment of hazards and risks aids in composing

quantitative indices of wildland fire behavior and effects with spatial layers of meteoro-

logical, vegetative, topographic, and socioeconomic information that could eventually

develop geographical fire danger indices (Kalabokidis et al. 2002a).

3.1 Fire Weather Index (FWI)

Table 2 shows the results of the four methods applied to examine how meteorological

conditions affect fire ignition probability. Except LR, all other methods show the occur-

rence of rainfall in the previous 24 h as the most significant parameter. More specifically,

the PI method estimates the rainfall’s influence to be 35.9%, in agreement with the rest of

the methods that classify this parameter as by far the most important of all variables

involved. Temperature is ranked second among all methods, while wind speed and relative

humidity follow according to the PI, WP, and PD methods. According to the signs of the

mean in WP and of the coefficient in LR methods, temperature and relative humidity

appear to have a positive influence on wildfire ignition while wind speed and rain have a

negative one. This association suggests that increased summer temperatures and low

amounts of rainfall account for high fire potential. The signs of relative humidity and wind

speed are in contrast with the general perception of how these variables affect fire igni-

tions, although wind is considered to have a dominant influence on fire (e.g., Finklin and

Fischer 1990). This is explained by the very low added effect of these variables compared

to temperature and rain (i.e., low mean and coefficient values of relative humidity and wind

speed versus high mean and coefficient values of temperature and rainfall in Table 2), as

well as by studying more thoroughly Fig. 2 where PD of the FWI neural network response

with respect to each input variable are presented.

The study of Fig. 2 shows how meteorological conditions affect fire ignition probability

throughout their input domain. The PD values of FWI with respect to temperature are all

Table 2 Results of the four methods applied for the sensitivity analysis of the input variable in Fire
Weather Index

Variable PI (%) WP LR PD (SSD)

Mean SD B Sig.

Temperature 28.7 3.893 1.710 5.963 0.002 11.246

Wind speed 20.9 -0.438 0.294 -17.100 0.004 1.078

Relative humidity 14.5 0.277 0.186 0.919 0.559 0.008

Rain 35.9 -6.002 9.707 -2.528 0.004 20.657

Total 100.0

PI percentage of influence, WP weight product, LR logistic regression model, PD partial derivatives
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positive (Fig. 2a), meaning that an increase in the temperature leads to an increase in fire

ignition potential. The higher values of temperature result in a larger positive change of fire

potential. The PD values of FWI with respect to rain are all negative (Fig. 2d), meaning

that when rain occurs in the last 24 h then fire danger decreases. This association confirms

the insight that increased summer temperatures and low amounts of rainfall account for

high fire potential. Diurnal variations in temperature and precipitation accordingly have

significant influence on fuel moisture content and therefore on fire potential (e.g., Andrews

et al. 2003).

The PD values of FWI with respect to relative humidity are all positive (Fig. 2c), while

the derivative values of FWI with respect to wind speed are all negative (Fig. 2b). Even if

this effect seems to be opposite to reality, it practically shows that relative humidity and

wind speed have minimal influence on fire ignitions for our study area. This can also be

seen by studying more thoroughly Fig. 2b and c. There is not a precise direction of plots

and the maximum values are quite low leading to the conclusion that fire ignition is either

not directly affected by these variables in our study area or influenced in combination with

other variables. This is also verified by a previous study (Kalabokidis et al. 2002b) where

in a similar ecological and socio-economical study area, summer temperature and rain

were significant in fire ignitions while relative humidity had no influence on wildfire

occurrence mainly due to the narrow range of summer relative humidity (40–60%) in

Greece. Wind has very high variability in speed and direction, with topography, vegetation,

and local heating and cooling having influences that result in micro-climates with localized

conditions (Trewartha and Horn 1980).

3.2 Fire Hazard Index (FHI)

Table 3 shows how vegetation (described in terms of both fuel models and fuel moisture)

and topography (elevation above sea level and terrain aspect) influence wildland fire

ignition. All methods result in the large influence of 10-h fuel moisture content (defined by

Deeming et al. 1977) as the first in ranking. The PI calculates the 10-h fuel moisture’s

Fig. 2 Partial derivatives of the FWI neural network response with respect to each input variable
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influence equal to 60.3%, while the mean of WP and the coefficient of LR both show very

high influence. With the exception of the first ranking variable, there is no total agreement

with the rest of the variables regarding their ranking, apart from PD that rank the fuel

models second, the aspect third, and the elevation fourth, according to the respective

magnitude of their statistics. Regarding the type of influence, the signs of the means in WP

and of the coefficient of LR show that fuel models (i.e., flammability) have positive

influence on wildfire ignition; the 10-h fuel moisture, elevation, and aspect have all neg-

ative effect. The only exception is the aspect that has positive influence according to the

LR, suggesting increases in fire hazard as the sunlight moves across different aspects

during the day.

Figure 3 shows the PD of the FHI neural network response with respect to each input

variable. The PD values of FHI with respect to the flammability of fuel models are

almost all positive, meaning that an increase in the flammability index naturally leads to

the increase in fire potential ignition (Fig. 3a). The PD values of FHI with respect to 10-

h fuel moisture are all negative for small values and near zero for higher values

Table 3 Results of the four methods applied for the sensitivity analysis of the input variable in Fire Hazard
Index

Variable PI (%) WP LR PD (SSD)

Mean SD B Sig.

Fuel models 12.2 422.999 2267.412 3.694 0.041 760.877

10-h Fuel moisture 60.3 -16246.136 81357.857 -6.532 0.035 29578.630

Elevation 10.6 -1551.479 7968.604 -1.061 0.478 288.322

Aspect 16.9 -1042.417 5666.958 0.712 0.275 299.648

Total 100.0

PI percentage of influence, WP weight product, LR logistic regression model, PD partial derivatives

Fig. 3 Partial derivatives of the FHI neural network response with respect to each input variable
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(Fig. 3b), meaning that an increase in 10-h fuel moisture leads to a decrease in fire

potential ignition, while for high moisture values the FHI tends to be independent from

this parameter. The elevation also has the same effect as 10-h fuel moisture on fire

danger, even if its values are more spread out (Fig. 3c). At lower elevations fire danger

increases more rapidly, while at higher elevation fire danger tends to become constant

depending more on climatic anomalies. Length of fire season and fuel vary with ele-

vation due to differences in amount of precipitation received, dates of snow melt, and

greening and curing dates of vegetation.

Aspect is the direction a slope is facing, measured clockwise in degrees from 0 to 360.

Aspect affects fire potential through variations in the amount of solar radiation and wind

that different aspects receive. The PD values of FHI with respect to terrain aspect (Fig. 3d)

are negative for values 0–200� (north, east, and south) and positive for values 200–360�
(southwest, west, and north). Slopes facing eastwards have the maximum negative influ-

ence (e.g., earlier heating and cooling and generally lee sides of mountains). South to

southwest facing slopes typically have the greatest number of fires and longest fire season

due to high solar radiation and vegetation water stress. Northerly aspects (having both 0

and 360� values) may support low frequency but high intensity fire regimes due to more

moist and heaviest fuel conditions (e.g., Agee 1994; Larjavaara et al. 2004).

The strong influence of the 10-h fuel moisture is indicated by the more evenly formed

plot of the values of PD in Fig. 3b that clearly show its effects. This is further supported

by the very high values of PD values of FHI with respect to 10-h fuel moisture

(Table 3). Indeed, the 10-h fuel (i.e., fuel particles \2.5 cm in diameter) moisture

content is one of the critical parameters of fuel properties related to fire ignition and

behavior. Drying of the fine dead fuels does increase ignition probability and potential

fire behavior (Chuvieco et al. 1999a). Consequently, a lot of operational fire danger

systems include its calculation (Deeming et al. 1977; Stocks et al. 1989). For the ele-

vation above sea level, fire occurrence is affected negatively at higher altitudes where (i)

climatic conditions tend not to lead to vegetation water stress and (ii) fire ignition causes

(e.g., human activities) are not close.

3.3 Fire Risk Index (FRI)

The importance of human impact variables that were taken into consideration in the FRI,

according to the four methods used, is shown in Table 4. In general, there was no total

agreement among the methods regarding the ranking of a variable’s influence. This is

explained by high covariance from the larger number of variables in FRI compared to the

other two indices, and the fact that there was not a prevailing influence from any individual

input parameter (e.g., in the case of 10-h fuel moisture content in FHI), but all of them have

had comparable effects. The different computation of all the methods leads to different

results in magnitude (Gevrey et al. 2003); thus the association between rank orders was

further evaluated with Spearman’s rho (q) in the next section. However, some similarities

regarding the magnitude of influence were observed as in the case of the month parameter

in which the frequency of fire ignitions was ranked first according to WP, and PD, second

according to PI and high in LR (Table 4). Also, the proximity to recreation areas has been

classified last in WP and second to last in LR and PD. With the exception of proximity

from recreational areas, all other variables have had the same kind of influence according

to all methods, as denoted by the signs of their respective statistics in Table 4. This can

also be noticed from Fig. 4, where the PD of the FRI neural network response with respect

to each input variable are presented.
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The PD values of FRI with respect to distance from recreational areas are spread over

the domain of input values (0–1), resulting at the same time in both negative and positive

PD values (Fig. 4f). A reason for this effect can be attributed to near-zero influence of this

variable on fire risk, while it can have some effects only by interacting with other inputs.

Regarding the kind of influence, potential fire ignition decreases away from main and

secondary roads, power lines, and urban areas (Table 4, Fig. 4a–d). It is an interesting

finding that fire danger does not increase as we move close to landfills and agricultural

lands (Fig. 4e, g) in our study area, contrary to the general perception that these human

activities constitute major potential causes of fire ignition. Also, weekdays seem not to

affect fire danger as opposed to weekends when fire danger increases significantly (Fig. 4i).

Our results from the analysis of the FRI input variables explain well the human risk factors

of fire history records in Lesvos Island (Fig. 1). August and September are the most critical

months in wildland fire occurrence in the island of Lesvos, followed by the proximity to

urban areas and main roads. Demographics and urban growth lead to pressures on wild-

lands and result in more ignition sources (Chuvieco et al. 1999b) in the vicinity of urban

areas, while the dense human presence on or close to main roads means more possible

causes of ignitions by accident or negligence (Thompson 2000). Recreational areas include

beaches and places of religious and archeological attraction, and they are ranked last on fire

risk levels since visitors tend not to cause fire ignitions. In the Mediterranean Basin, places

with conflicts in the rural and urban interface seem to have a higher potential of ignition

risk, especially during the months of August and September when the weather conditions

and fire operational limitations may support severe wildland fires.

4 Conclusions

One of proposed methods for the study of fire ignition potential is ANNs that show a

significant ability in pattern recognition of complex models, including natural phenomena

(Chuvieco et al. 1999b; Vasconcelos et al. 2001; Vasilakos et al. 2007; Vega-Garcı́a et al.

1996). Contrary to their modeling flexibility, ANN’s analytical capabilities of directly

Table 4 Results of the four methods applied for the sensitivity analysis of the input variable in Fire Risk
Index

Variable PI (%) WP LR PD (SSD)

Mean SD B Sig.

Primary road network 17.3 -3.977 6.844 -2.462 0.031 293.830

Secondary road network 6.0 -1.944 3.067 -2.002 0.023 48.318

Power lines 6.3 -1.702 2.922 -1.538 0.216 60.052

Urban areas 9.1 -9.183 12.857 -2.319 0.038 489.701

Landfills 9.2 4.750 6.157 0.841 0.345 175.973

Recreation areas 12.1 0.247 0.248 -0.489 0.471 41.051

Agricultural land 12.8 1.608 3.491 1.600 0.115 99.546

Month 14.3 32.965 12.690 1.724 0.000 1304.499

Day of the week 12.9 3.186 6.010 0.392 0.201 36.074

Total 100.00

PI percentage of influence, WP weight product, LR logistic regression model, PD partial derivatives
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measuring variables’ influence are limited. Various explanatory methods have been

explored to dismantle this ‘‘black box.’’ The scope of the current research was to apply four

explanatory methods to estimate variables’ importance on a fire ignition danger scheme.

Fig. 4 Partial derivatives of the FRI neural network response with respect to each input variable
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In our real-data research study, the relative performance of each method was statisti-

cally epitomized with the Spearman’s rank correlation coefficient rho (q) and the results

for each index can be seen in Table 5 (Norusis 1990). PI, WP, and PD showed similar

significant performance in calculation of ranking variables of FWI (mean Spearman’s q
coefficients of 0.733 in Table 5), while LR was not able to classify the input parameters

especially rainfall and wind speed (Table 2). The input variables that composed FHI were

better classified by PD (mean Spearman’s q coefficients of 0.600 in Table 5); it is worth

mentioning that all methods ranked first the 10-h fuel moisture content, which had a

significant influence on the calculation of this index (Table 3). The WP and PD methods

have shown almost similar performance in the estimation of rankings for FRI (mean

Spearman’s q coefficients of 0.506 and 0.516 in Table 5, respectively), where nine-paired

ranks have existed (Table 4). Overall, PD have shown considerable stability and credibility

on their performance (even with inputs having close influence); performance of the rest of

the methods was affected by the number of input parameters and the magnitude of their

importance.

Conclusively, Table 6 summarizes the ranking of the variables’ influence according to

the results discussed above. In regard to weather conditions, the most significant parameter

for fire ignition in the study area is the occurrence of rainfall in the last 24 h followed by

temperature, wind speed, and relative humidity. The largest positive change of fire danger

is caused by the higher values of temperature, and the biggest rate of negative change of

fire danger is caused by the occurrence of rainfall in the last 24 h (Fig. 2). With respect to

the vegetation and topography fire hazard, 10-h fuel moisture content is the most signif-

icant variable followed by fuel models, aspect, and elevation (Table 6). Regarding human

presence and socioeconomic impacts, the FRI (Table 6) is mostly influenced by month of

the year followed by proximities to urban areas, landfills and main roads; distance from

recreational areas seems to have the smallest effect. The FRI had the biggest rate/slope of

positive change by months of the year with high percentage of historic fire ignitions, and

the biggest rate of negative change by proximity to main roads and urban areas (Fig. 4).

Table 5 Spearman’s rho (q) of ranking methods for Fire Weather Index (FWI), Fire Hazard Index (FHI),
and Fire Risk Index (FRI)

Index Method PI WP LR PD Mean

FWI PI 1.000 1.000 0.200 1.000 0.733

WP 1.000 1.000 0.200 1.000 0.733

LR 0.200 0.200 1.000 0.200 0.200

PD 1.000 1.000 0.200 1.000 0.733

FHI PI 1.000 0.400 0.400 0.800 0.533

WP 0.400 1.000 0.400 0.200 0.333

LR 0.400 0.400 1.000 0.800 0.533

PD 0.800 0.200 0.800 1.000 0.600

FRI PI 1.000 0.250 0.033 0.150 0.144

WP 0.250 1.000 0.417 0.850 0.506

LR 0.033 0.417 1.000 0.550 0.333

PD 0.150 0.850 0.550 1.000 0.516

In the calculation of mean, the q coefficient between the same methods is excluded

PI percentage of influence, WP weight product, LR logistic regression model, PD partial derivatives
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Regarding the comparison of the different methods used in this research, the use of PD

as an explanation of a variable’s influence in a neural network that models wildland fire

ignitions can provide useful results to forest management and other agencies dealing with

forest fires. As a result, preventive measures can be focused on the factors identified as

important and enhance the reduction of fire ignitions and the mitigation of likely damages.
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