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Abstract. Prevention is one of the most important stages in wildfire and other natural hazard management regimes.
Fire danger rating systems have been adopted by many developed countries dealing with wildfire prevention and pre-
suppression planning, so that civil protection agencies are able to define areas with high probabilities of fire ignition and
resort to necessary actions. This present paper presents a fire ignition risk scheme, developed in the study area of Lesvos
Island, Greece, that can be an integral component of a quantitative Fire Danger Rating System. The proposed methodology
estimates the geo-spatial fire risk regardless of fire causes or expected burned area, and it has the ability of forecasting
based on meteorological data. The main output of the proposed scheme is the Fire Ignition Index, which is based on
three other indices: Fire Weather Index, Fire Hazard Index, and Fire Risk Index. These indices are not just a relative
probability for fire occurrence, but a rather quantitative assessment of fire danger in a systematic way. Remote sensing
data from the high-resolution QuickBird and the Landsat ETM satellite sensors were utilised in order to provide part of
the input parameters to the scheme, while Remote Automatic Weather Stations and the SKIRON/Eta weather forecasting
system provided real-time and forecasted meteorological data, respectively. Geographic Information Systems were used
for management and spatial analyses of the input parameters. The relationship between wildfire occurrence and the input
parameters was investigated by neural networks whose training was based on historical data.

Additional keywords: geo-informatics, GIS, natural hazards, neural networks, wildfires.

Introduction

Many countries facing forest fire problems have developed wild-
fire danger estimation systems in order to enable civil protection
agencies to define high risk areas and plan the necessary pre-
ventive and preparedness actions (Deeming et al. 1977; Van
Wagner 1987; Hoffmann et al. 1999). The majority of the sys-
tems are based, mainly, on meteorological data that are collected
by weather stations (Deeming et al. 1977;VanWagner 1987; Car-
rega 1991;Viegas et al. 1999). Nevertheless, these systems adopt
a different approach to spacial–temporal resolution for which
they are applied, and they use various correlations of the input
parameters. Geographic Information Systems (GIS) are widely
used in order to collect, manage, analyse and present spatial data
that are taken into consideration in identification of wildfire pat-
tern occurrence (Chuvieco and Congalton 1989; Chou 1992a,
1992b). The aim of the present research was to develop a fire
ignition risk index as a part of a quantitative fire danger rating
system based on parameters that are easily and quickly defin-
able, in order to be usable in forest fire management activities
such as (Kalabokidis 2001):

• Preventive measures that aim at the reduction of fire ignitions,
e.g. personnel and volunteer training, effective legislation
regarding property land development and law enforcement.

• Preparedness measures that promote the existence of an
agency able to initiate promptly and effectively direct suppres-
sion of any forest fire at its ignition, with sufficient firefighting
force for direct suppression, including dispatch systems for
fire suppression, operation of lookout towers and patrols.

• Raising public awareness of oncoming fire risk, and accessing
administrative response arrangements.

• Emergency situation assessment and evacuation of threatened
areas if appropriate.

Study area

The island of Lesvos is located in the north-eastern Aegean
Sea and covers an area of 1672 km2 (Fig. 1). The climate is
Mediterranean-type, with typical warm and dry summers and
mild and moderately rainy winters. Annual precipitation aver-
ages 670 mm and the average annual air temperature is 18◦C with
large differences between maximum and minimum daily temper-
atures (Kalabokidis et al. 2004). The terrain is hilly and steep,
with the highest peak at 960 m above sea level. Slopes greater
than 20% dominate, covering almost two thirds of the island.
Narrow alluvial plains are present in the lower parts and along
the coast, having a shallow groundwater table. Arid lands are
prominent in the western part of the island, in which acid volcanic
rocks dominate. Vegetation of the area, defined on the basis of
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the dominant species, includes phrygana or garrigue-type scrubs
in grasslands, evergreen-sclerophyllous or maquis-type shrubs,
pine forests, deciduous oaks, olive tree orchards and other agri-
cultural lands (Fig. 2). The soils of Lesvos have been widely
cultivated, mainly with rain-fed crops such as cereals, vines and
olives. Owing to low productivity, the majority of sites were
abandoned 40–50 years ago. After abandonment, the area was

Fig. 1. The study area of Lesvos Island, Greece.

Fig. 2. Land cover types of Lesvos Island, Greece, derived from QuickBird satellite data by visual interpretation.

moderately grazed and the growing shrubs were occasionally
cleared by the use of fire. More than 420 fires, mainly human-
caused, occurred from 1970 to 2001, resulting in ∼80 km2 of
burned area in total (Fig. 3). Even though the number of fires has
increased during recent years, the burned area has been limited
owing to the fire control undertaken by the Greek Fire Brigades,
which use heavy aerial suppression in addition to ground-based
equipment and personnel.

Data and methodology

The fire ignition risk scheme presented is part of a Fire Dan-
ger Rating System (FDRS) that has been developed within
the framework of the European Union research project AUTO-
HAZARD PRO, and has been designed as a potential evolution
of the empirically derived fire danger mapping of Greece (Kal-
abokidis 2004). The main outcome of the proposed subsystem
is the Fire Ignition Index (FII), based on three different indices:
the Fire Weather Index (FWI), the Fire Hazard Index (FHI) and
the Fire Risk Index (FRI). Each of these indices is dynamic, i.e.
they vary according to time and space. The correlation between
fire occurrence and the parameters that are incorporated into the
above indices is based on fire history data and has been modelled
by the use of artificial intelligence methods and neural networks,
in particular. The training of neural networks makes them a pow-
erful tool to be used for any specific geographic extent if similar
spatial and fire history databases are developed, as in the present
case study. Furthermore, the neural networks can be re-trained
for each study area by adding new fire data after the end of the
fire season. In Fig. 4, the work methodology is depicted as well as
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Fig. 3. Number of fires and burned area on Lesvos Island, 1970–2001.

Fig. 4. Flowchart of methodology.

the parameters considered for the estimation of each index such
as meteorological conditions, distance from human presence,
vegetation and topography. These parameters have been chosen
in such a way as to be easily defined, thus enabling the system

for immediate operational use at a local level. The composi-
tion of the final index using the three individual indices was
undertaken by multi-criteria analysis methods and according to
Analytic Hierarchy Process (AHP).
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(a) (b)

Fig. 5. Thiessen polygons of (a) 4 (+) Remote Automatic Weather Stations, and (b) 8 (+) points of forecasted
weather data from SKIRON/Eta model.

Fire Weather Index: conception, structure
and data collection
The Fire Weather Index contains the correlation between fire
weather parameters and fire ignition. The FWI includes the
meteorological conditions such as air temperature, relative
humidity, wind speed and the existence of rainfall during the
previous 24 h from the time the index is calculated. It is based
on meteorological data collected by four Remote Automatic
Weather Stations (RAWS). The actual FWI (and hence the actual
FII) is calculated by using RAWS data. The forecasted FWI
is estimated based on meteorological data derived from the
SKIRON/Eta model with 5-day horizon (Kallos et al. 1997;
Papadopoulos et al. 2001). The main assumption is for the
spatial distribution of the meteorological conditions using the
above point measurements. The method of the Thiessen poly-
gons was applied for the present study considering that the
point measurements derived from the weather stations and
the SKIRON/Eta model are sufficient to describe the surface
weather conditions (Fig. 5). For a better description of the
wind field, a higher resolution model (e.g. 1–2 km) is required.
Because this was not feasible owing to technical–economical
reasons, wind fields with horizontal resolution ability of
10 km (considered to cover the present application sufficiently)
were used.

Fire Hazard Index: conception, structure
and data collection
The Fire Hazard Index refers to fire ignition probability based
on topography and vegetation. FHI includes fuel models, 10-h
fuel moisture content, terrain elevation and aspect. Areas with
the same vegetation type have the potential of a different risk due
to terrain and quantity of vegetation. This variation in vegetation
may be accounted for in the different fuel models (Deeming et al.
1977). To create the spatial layer of fuels on the island of Lesvos,
CORINE land cover types were matched to the 13 BehavePlus2
fuel models (Andrews et al. 2003). Five fire behaviour parame-
ters (i.e. Rate of Spread, Heat per Unit Area, Fireline Intensity,
Flame Length and Reaction Intensity) for each model were then
calculated, under the assumption that the equally weighted sum
of these parameters considered as flammability could be exam-
ined for any effect in a fire ignition scheme (Kalabokidis et al.
2004). The input conditions were the worst – average environ-
mental values for the study area: 1-h fuel moisture content (FMC)

of 5%, 10-h FMC of 6%, 100-h FMC of 7%, live FMC of 70%,
wind speed of 15 km h−1, wind direction of 0◦ applied for 0, 15,
30, 50 and 100% of slopes.

The 10-h fuel moisture (DFMC) was also included in the cal-
culation of FHI. When the fire ignition scheme was initialised for
the real-time calculation of FII, the 10-h fuel moisture value (as
systematically measured in RAWS) was taken into account. In
order to run the sub-system in a forecast mode, the expected fuel
moisture was calculated based on the forecast relative humid-
ity (RH) provided from the SKIRON/Eta model. Observations
from RAWS were used to model the 10-h fuel moisture with RH,
resulting in the function (R2 = 0.784):

DFMC = −1.0232 + 0.4882×RH − 0.0125×RH2

+ 0.0001×RH3

In order to examine whether and how fire ignitions are
influenced by terrain elevation and aspect, both variables were
included in the FHI scheme.Terrain elevation was retrieved from
the 20-m contour interval of maps with scale 1:50 000 whereas
aspect was calculated from elevation through GIS.

Fire Risk Index: conception, structure and data collection
The human factor is of great importance in danger estimation,
especially in the Mediterranean countries where it is one of the
primary causes of forest fires either by accident or arson. The
FRI refers to the fire risk at a particular area due to human
presence. The spatial analysis of human risk is quite complex,
owing to the difficulty of spatially illustrating human activities.
The prime method used to delineate human risk is the correlation
of the spatial distribution of fire ignition with the proximity to
human activities (Chuvieco and Congalton 1989; Chuvieco and
Salas 1996).

The parameters taken into account for the calculation of FRI
were distances from main and secondary road networks, power
lines, urban areas, landfills, recreation areas (i.e. camping sites,
swimming beaches and other sites with temporary human pres-
ence, especially during the fire season), agricultural land, and
month and day of the week.The month was included in the model
based on the rate of fires ignited during each month from 1970
to 2001, and the day of the week with a binary value (weekend
or not).

In Fig. 6, the structural system parameters presented are more
or less permanent and don’t alter on a short-term basis, and most
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Fig. 6. Structural parameters of the system linearly stretched in domain 0–1.
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Table 1. Number of fires in training (Tr.) and validation (Val.) datasets for each index
FWI, Fire Weather Index; FHI, Fire Hazard Index; FRI, Fire Risk Index

FWI – Tr. FWI – Val. FHI – Tr. FHI – Val. FRI – Tr. FRI – Val.

Total sample 64 27 91 25 322 121
Fire ignitions 27 17 45 12 202 66
Non-fires 37 10 46 13 122 55

of them are based on straight-line distances from human activity.
More than 20 scenes of the very high resolution remote sensing
data coming from the QuickBird sensor (pixel size 2.8 m) were
used for direct mapping (by visual interpretation) of the road
network and the urban and agricultural areas. To replace the few
clouded areas, Landsat-ETM imagery was used with 30 m pixel
size at multispectral channels and 15 m at panchromatic.

Fire Ignition Index: conception and structure
FII is a composite index representing the accumulated ignition
risk of an area based on the probability of a fire starting based on
weather, hazard and risk indices. As no type classification was
considered in the wildfires that were taken into account, FII cal-
culated the index of a fire ignition regardless of its severity. For
better comprehension and acceptance of the final map by end-
users, the FII was classified into five categories of low (0–40),
medium (41–60), high (61–80), very high (81–90) and extreme
danger (91–100). These classes in our application do not neces-
sarily represent the kind of precautionary measures that should
be taken vis-à-vis the fire danger, but they are only a qualita-
tive characterisation of FII. The above FII ranges were selected
by analysing the 2003 and 2004 fire seasons to calibrate the
specific classes to visually identified areas where fires ignitions
occurred. More specifically, the classes were initially selected to
have equal range for the year 2003 and the fires that occurred
were mapped for each day. According to the results, the fire igni-
tion was reclassified in order to have the maximum number of
fires and the smallest area in the higher classes.

Data collection and pre-processing
A total of 420 fires that occurred during the period 1970–2001
on the island of Lesvos were mapped and the historical data
necessary for the training of neural networks were collected with
the help of interviewed residents, experts and Global Positioning
Systems. The variables that refer to distances from a parameter
for each ignition point were calculated by GIS. Training and
validation samples were created from the total historical data
of the fires, to be used in the neural networks for each index.
Owing to the absence of daily meteorological data, with the
exception of some of doubtful credibility, fires that occurred
during the 1997–2001 period (May–September) had to be used
for the training of the FWI and FHI (with uneven numbers of
fires because some daily weather data were also missing during
this period). For the training of FRI, all the fires having occurred
during May to September (1970–2001) were used, i.e. a total of
268 fires (Table 1). In order for the resulting model not to become
biased in favour of fires, a randomly selected subset of 70% of
all fires was used in every training of FRI. For the simulation

Fig. 7. Fire ignition points and non-fire points during years 1970–2001.

of the system’s operation and its better validation, the 102 fires
having occurred from May to October 2003 were mapped, and
the values of all the parameters taken into consideration during
training were collected. October was included in the validation
database of 2003 because 42 out of 102 fires were ignited during
this month. The specific fires were used in the validation stage as
well as in the resulting interpretation stage only for fire causes on
Lesvos Island. For proper training, random points simulating the
non-fires for the specific time during the year 2003 were created.
After having verified that there had not been any fires at the
points above at the specific time, meteorological conditions were
collected as well as the rest of the parameters according to the
methodology followed for the fires during 1970–2001 (Fig. 7).

Neural network training
The development of artificial neural networks or simply neural
networks (NN) began over 50 years ago as part of scientists’
attempts to better comprehend the human brain and simulate
some of its abilities. There is no widely accepted definition of
the NN. Neural Networks are simply a means of processing data
based on the human brain model using the main concepts of its
function.The NN are based on a collection of units similar to neu-
rons trying to perform similar procedures, and are particularly
useful for pattern recognition and modelling complex problems
for which the explicit form of the relationships among certain
variables is not known (Fausett 1994). NN have been partly used
for spatial fire ignitions forecasts (Vasconcelos et al. 2001).

The calculation of the three initial indices was undertaken
through the use of an NN, and more specifically a Multi-Layer
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Fig. 8. Backpropagation neural network with one hidden layer and one
output neuron.

Perceptron (MLP) that had been trained through the method of
error back-propagation. This is the most popular method for
training an NN with multiple processing layers. Different varia-
tions of the error back-propagation method have been developed
but it was promoted, and became popular, by Rumelhart and
McClelland (1986). The basic architecture of MLP with i input
nodes, one hidden layer with j units and the output layer with k
nodes is shown in Fig. 8. During training, the network initiates
the learning process through the random values of its weights.
The computed output is then compared with the actual output of
the input vector Xp and the weights are corrected so as to min-
imise the error function (gradient descent). The same process is
repeated many times so that the error is gradually diminished
until it becomes small and tolerable.

In order to evaluate the performance of the NN, the Mean
Square Error (MSE) function was used:

MSE = 1

n

∑

k

(tk − dk )
2

where tk is the desired outcome, dk the actual outcome in the
output layer and n the total number of the training samples. The
logistic function that follows was used as an activation function,
which is necessary for the implementation of non-linearity in
the network:

f (z) = 1

1 + e−z

This function approaches 1 for big positive values of z, and 0
for big negative values of z, and is appropriate for the occurrence
or not of fires, as the dependent variable has a binary value 0 or 1
(Jordan 1995; Sarle 1997). Moreover, the use of this continuous,
differentiable and monotonically non-decreasing function as the
activation function allows for the interpretation of the result as
a probability (Hampshire and Pearlmutter 1990; Bishop 1995).
Finally, the logistic function was also used in the output neurons
in order to avoid effects from noisy data that didn’t conform to
the identity function or any other linear function (Masters 1993).

The training procedure of the network in Fig. 8 can be
summarised in the following steps:

• Initialisation of weights w
• Feeding the network with the input vector x = (x1, x2, . . . , xi)

• The input for each hidden unit is given by the equation
z_in =∑

ixiwji

• Calculation of the output of each hidden unit with zj = f (z_in),
where f is the logistic function presented above

• Then, the input of each output unit is given by y_in =∑
jzjwkj

• Calculation of the output of each output node with
yk = f (y_in), where f is the logistic function presented above

• Weight correction (i.e. for weights connecting output layer
with the previous layer) with �wkj(t+1) = −r ∂E

∂wkj
+�wkj(t),

where r is the learning rate and controls the rate and the speed
of the training.

The network was re-fed with new input data and the process
was continued for t iterations, known also as epochs, until the
error was minimised. In order to ensure that the trained network
would approximate target values that were not included in the
training dataset, a validation dataset was used that included cases
that were not used in training. Usually, the training was stopped
when the error started to increase in the validation dataset despite
the fact that the error could be still decreasing in the training set.
This was an indication that the network had a good generalisation
and an overfitting to the training dataset had been avoided.

Analytic hierarchy process
FII is calculated by multicriteria analysis of the three individual
indices, according to the weighted average method:

FII =
n∑

j=1

wjaij

where n is the number of decision criteria, aij is the actual value
of the ith alternative in terms of the jth criterion and wj is the
weight of importance of the jth criterion. By applying the above
formula to the present study, the Fire Ignition Index (FII) was
calculated with:

FII = waFWI + wbFHI + wcFRI

The vector of weights w was calculated by the Analytic
Hierarchy Process (AHP), as proposed by Saaty (1980). More
specifically, the AHP was used for the calculation of the three
indices’ weights after a pairwise comparison among the indices
using a relative importance scale.The strength of importance was
expressed on a ratio scale from 1 to 9 in order to quantify the
linguistic choice. A preference of 1 indicates equal importance
between two indices, whereas a preference of 9 indicates that one
index is 9 times more important than the one with which it is
being compared. These pairwise comparisons were initialised by
the decision makers that were experts in the importance of each
criterion to another, and a decision matrix (comparison table)
was constructed, which in the present study had dimensions of
3 × 3. The comparison table has the following basic properties:
aii = 1 and aij = 1/aji where aij is the strength of importance of
criterion i compared with criterion j. For the calculation of the
weights of each criterion, the right principal eigenvector from
the comparison table was calculated. The eigenvector can be
approached using the geometric mean of each table line, i.e.
multiplying the elements of each line to each other and then cal-
culating the n-th root, where n equals the number of elements in
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Table 2. Training and validation results of neural network training
FWI, Fire Weather Index; FHI, Fire Hazard Index; FRI, Fire Risk Index; MSE, Mean Square Error

FWI FRI FHI

Number of hidden layers 1 1 1
Number of nodes in hidden layers 6 8 4
Training epochs 100 1000 1500
MSE training sampleA 0.122 0.121 0.091
MSE validation-1 sampleA 0.130 0.157 0.120
MSE validation-2 sampleB 0.177 0.073 –
Correct classification of fire ignitions in training sampleA 93% 87% 91%
Correct classification of non-fire points in training sampleA 59% 50% 69%
Correct classification of fire ignitions in validation-1 sampleA 88% 89% 75%
Correct classification of non-fire points in validation-1 sampleA 60% 38% 76%
Correct classification of fire ignitions in validation-2 sampleB 65% 91% –

A(FWI and FHI: 1997–2001, May–September; FRI: 1970–2001, May–September).
B(May–October of 2003).

each line. Afterwards, the geometric means were normalised by
dividing them by their sum (Triantaphyllou and Mann 1995).

In reality, the comparison table is not considered consistent.
Saaty (1980) recommends that in order to evaluate the table’s
credibility, the use of Consistency Index, CI, and Consistency
Ratio, CR, are applied, dividing the CI by a Random Index, RI,
which equals 0.58 for the 3 × 3 table. When CR is small enough,
then the comparison table is considered consistent. The value 0.1
is used as a criterion. In case of CR > 0.1, then the re-evaluation
of pairwise comparisons that have been chosen in the comparison
table should be considered.

Results and discussion

Multiple tests were performed in order to select the final structure
of the neural networks for each index. Despite the NN’s mod-
elling flexibility, the possibilities of directly measuring the vari-
ables’ influence are limited. The resulting weights of the trained
networks cannot be directly examined; thus it was impossible to
interpret weights v. inputs importance or fire causes. In order to
evaluate the performance of the training, the correct classifica-
tion rates of training and validation samples were used, i.e. actual
fires classified as fires and non-fires classified as non-fires.Also,
the MSE of the training and the validation datasets was moni-
tored during training; the process was continued until the MSE
of the training or the validation dataset started to increase.

A learning rate r = 0.1 was chosen, whereas the output neu-
ron was considered activated in case of an output value above
0.5. The FWI function was more easily approached, whereas
the FRI had better classification percentages regarding the 2003
fires (Table 2). The training for the three networks was stopped
before the MSE for validation sets of the period 1997–2001
started to increase. The error of the 2003 validation set was cal-
culated with the trained network because only fire records were
included.

More specifically, the chosen network of the calculated FWI
classified correctly 93% of the fires of the 1997–2001 training
sample and 88% of the fires of the 1997–2001 validation sample
(Table 2). On the other hand, 59% of the non-fire points for the
training sample and 60% of the non-fire points for the validation

sample were correctly classified. In almost 100 epochs in the
training process, the network missed its generalisation in the
2003 validation sample, whereas in the case of more than 700
epochs, the generalisation in the 1997–2001 validation sample
was missed as well; this meant an over-fitting of the function on
the training sample. When adding a second hidden layer, the net-
work became more sensitive in local minimums, whereas in 400
epochs, there was a better classification of the 2003 fires. How-
ever this network with a second hidden layer was not selected
owing to an under-estimation of the non-fires in the training
sample.

The network used by FRI was trained in 1000 epochs. For
more epochs, it missed its generalisation in the 1970–2001 vali-
dation sample. The correct classification percentages are judged
to be satisfactory although there was an over-estimation due to
the low percentage of correct classification regarding non-fires
in the 1970–2001 sample. More specifically, the correct classi-
fication of non-fire points for the training sample was 50% and
for the validation sample was 38%. The latter means that for
62% of the points that were not expected as a fire, an ignition
probability more than 50% was computed (Table 2). It is worth
mentioning the great percentage (91%) of the correct classifi-
cation of the validation sample regarding the 2003 fires. This
meant that 91% of the fires having occurred in Lesvos during
the period of May to October 2003 broke out in areas where the
network output was more than 50% for the FRI, i.e. the 2003 fires
had human presence and activity as a main cause. This is also
confirmed by the cross-examination of files of the Fire Depart-
ment regarding the many human-caused fires on Lesvos Island in
2003.

The training process of the FHI enhanced the conclusion
above, because the MSE of the 2003 validation sample showed
very high values, whereas the correct fire classification percent-
age was low. Thus, the training was based completely on the
fires of the 1997–2001 period and was terminated before miss-
ing the generalisation in the validation sample. The 91% of the
fires and the 69% of the non-fires in the training sample were
correctly classified, whereas the 75% of the fires and the 76% of
the non-fires in the validation sample were correctly classified
(Table 2).
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Fig. 9. Fire Ignition Index (FII) mapped and fires ignited on 23 June 2003 and 27 August 2003.

The weight vector of FII that resulted from AHP had no direct
relation with fire causes but it was calculated based on the rela-
tive importance of each index compared with others, intuitively
assigned by the authors. We assigned a moderate (weak to equal)
importance of FRI over FWI, a weak importance of FRI over
FHI, and a weak importance of FWI over FHI. The choices are
based on the specific fire history of the area and taking into con-
sideration that fire ignitions, regardless of the resulting burned
area, were dependant mostly on human factors, i.e. from July to
October, the records of the area show an equal distribution of
fire ignitions for each month. The choices also are based on the
fact that FWI and FHI cannot be relatively strong indicators of
an FII as they affect mostly fire spread.

The comparison table, which had a 0.0268 CI and a 0.0462
CR, was created to calculate the FII. Consequently, using the
weight vector that came up, the FII was calculated through the
function:

FII = 0.3325 × FWI + 0.1396 × FHI + 0.5278 × FRI

In Fig. 9, the FII is presented for the dates 23 June 2003 and
27 August 2003, when three and four fires occurred respectively
on the island of Lesvos. To create the maps, the actual weather
conditions of the specific days were used. All the fires occurred
in areas where the FII was more than 50. The comparative risk
in relation to some other areas was much larger. More specifi-
cally, the FII (23 June 2003) for the three fires was 56, 59 and 72
respectively. Regarding area classification, 4% of the area was
classified as ‘low’, 79% classified as ‘medium’ and 17% classi-
fied as ‘high’. The four fires of 27 August 2003 had FIIs of 65,
66, 68, and 71, respectively, whereas 29% of the area was clas-
sified as ‘medium’, 70% classified as ‘high’ and 1% classified
as ‘very high’.

The map-outcomes in Fig. 9 might be useful to the Fire
Departments and state authorities as an important decision-
making tool for prevention and suppression of forest fires. An

operational validation of FII under realistic conditions was per-
formed during the fire period of 2004, although only 28 fires
occurred on Lesvos Island as opposed to the 102 fires that
burned during 2003. The reduction of fire events was mainly
due to the high alertness of the public authorities (i.e. fire depart-
ment, police, etc.) during the 2004Athens Olympics. During this
period, the FII map was produced daily, valid for the next day,
and distributed to the local Mytilene–Lesvos Fire Department
and the General Secretariat for Civil Protection of Greece. The
operational use had the following results: from June till Septem-
ber 2004, 12 out of 28 fires were ignited in areas classified as
‘Medium Danger’, which averaged 63% of the total area, and
16 occurred in ‘High Danger’ areas, which averaged 35% of the
total area. The remaining 2% of the area was classified as ‘Low
Danger’. No areas were classified as ‘Extreme Danger’, whereas,
rarely, very small areas were classified as ‘Very High Danger’
for the 2004 fire season owing to actual weather conditions.
The validation of 2004 confirmed that fire ignition in Lesvos
is dependant mainly on human factors. Human risk factors are
shown from fire history records on Lesvos Island. According to
the 1970–2001 fire history records for Lesvos Island, the causes
of 55% of wildfires were determined. Human negligence was
responsible for 62% of wildfires erupted from known causes;
16% were arson, 10% were lightning fires, 6.5% were caused by
activities of the army, 2.8% were garbage disposal-related and
1.7% were from electric powerline malfunctions. Our methodol-
ogy, and especially the FRI, can describe spatially the previous
causes except for lightning and army fires. As the parameters are
not dynamic per se, our results can be used in mid- to long-term
forest management regarding fire prevention and planning. The
trained NN is consistent with what would be the understanding
and expectation of experienced forest fire staff and of history
that the main factor in forest fire ignition is human presence and
activities. In general, Lesvos Island seems to have a clear equa-
tion of people equal fire on a long-term basis. This fact explains
the low correctness in classification rates of non-fire points; 50
and 62% of the non-fire points of the training and the validation
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samples, respectively, were classified as expected fires with more
than 50% probability.

Conclusion

The aim of the present research was to develop an operational
large-scale quantitative fire ignition risk scheme as a component
of a fire danger rating system, with the ability for short-term
forecasting of wildfire danger to support better and realistic pre-
vention and pre-suppression planning. The proposed scheme is
based on multiple layers of information from the quantitative
and systematic analysis of the spatial distribution of fire ignition
points. Some of the parameters that were taken into considera-
tion are vegetation, topography, weather conditions and human
geography of the study area.

High-resolution QuickBird satellite data were used for direct
mapping by visual interpretation of land cover boundaries, a
methodology with a high level of confidence and accuracy in a
local-to-regional scale. Innovative methodologies of automatic
object recognition could be also used with a main disadvantage
being the specialised technological know-how that is required.

The neural network showed a significant ability to discover
patterns in data that are so obscure as to be imperceptible to
standard statistical methods. The input data of natural phenom-
ena usually exhibit significant unpredictable non-linearity and
variability, but the robust behaviour of a neural network makes
it perfectly adaptable to environmental models and these sort of
data. The time required for processing the input tabular data dur-
ing the training and the input of raster data during the calculation
of indices was limited, suggesting that these processes could be
used in an operational mode within an integrated process, e.g. a
landscape fire danger prediction system.

The ability of NN to be trained makes them a powerful func-
tion approximator for a fire ignition scheme. Compared with
other operational systems that are based on data-driven speci-
ficities of each target area, NN can be trained to develop the
specific equation representing the fire ignition pattern scheme
of each area. If the training sample is changed with another
one from the same area (Lesvos Island), the results should not
change significantly if both training procedures are successful.
That would mean that a generalisation was achieved. If a sample
from another area is used for NN training, then the results are
likely to change, reflecting the wildfire ignition pattern in that
area. One of the disadvantages of NN is the difficulty of inter-
pretation of model output in order to identify the most important
input variables that affect it. Because of this, NN have often been
characterised as a ‘black box’.

Future work, based on the present research, is geared towards
performing sensitivity analysis on the trained networks in order
to rank variable importance. This can provide useful outputs in
a quantitative fire ignition system because forest fire manage-
ment activities can then be focused on preventive measures that
specifically target the reduction of fire ignitions based on the
most important variables. Validation will also be continued over
the next years, after corrections and optimisation of the whole
procedure take place. Fire ignitions of recent years, for which
actual weather data from RAWS exist, will be used exclusively in
new trainings of NN. Spatial computational methods of weather

variability will be included in the methodology as well as new
fuel type mapping, as available.
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