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Linear color camera model for a skylight colorimeter
with emphasis on the imaging pipeline noise performance
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Abstract. We develop a digital camera model with the purpose of
simulating the performance of a sky radiance colorimeter, based on
a single-sensor camera equipped with a charge-coupled device im-
ager. To provide a color image, the sensor is covered with a Bayer
color filter array (CFA). The model input is the radiance, expressed
in radiometric units. Demosaicking of the CFA is performed using
three common interpolation methods. Color characterization is per-
formed by calculating 3�3 matrices, based on either the maximum-
ignorance assumption or computer-generated sky radiance training
sets. For the model to be reliable, we incorporate multiple noise
sources. We also parameterize many “critical” characteristics of the
simulated imager, for example, temperature-related dark-current
generation and pixel size. Error propagation analysis is performed,
including an analysis for the demosaicking methods. Colorimetric
performance results, expected measurement accuracy, and valida-
tion of the derived noise propagation equations are presented.
© 2005 SPIE and IS&T. �DOI: 10.1117/1.2137627�

1 Introduction
The presence of air-suspended particles �aerosols� is one of
the main causes of observable discolorations and color con-
trast reduction of objects seen through a polluted
atmosphere.1,2 However, for the quantitative description of
these tendencies, measurements of ambient atmospheric
color are required.

In this paper, we investigate the possibility of using a
color single-sensor camera to precisely record the color of
the atmosphere. Sky color measurements can provide good
estimates of the atmospheric clarity and contribute to the
investigation of pollution episodes associated with low vis-
ibility. They can also provide useful information of the
aerosol loading of the atmosphere.1–5 Although recording
sky color with a video or a still camera is not a new idea,5,6

this is the first time research has been conducted on the
characteristics of a camera used to record skylight. We are
particularly interested in the investigation of the perfor-
mance and characterization of a tristimulus colorimeter
based on a single-sensor camera. This instrument is specifi-
cally intended to measure skylight color from various posi-
tions of the cloudless sky vault, during daytime including
dawn and dusk hours.

Creating a digital camera model �DCM� that includes
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the simulation of noise sources is critical if we want to
investigate the limitations of the measurement procedures.
It is also important if we want to estimate the accuracy of
color retrieval and know in advance the effect of noise on
the camera output. Common scientific practice is the study
of uncertainties for any measuring procedure.7 In this pa-
per, we are interested in the uncertainties of the measure-
ments induced by the imaging pipeline itself, including the
sensor thermal noise, and how these uncertainties influence
accuracy. Furthermore, the sequence of the stages of the
imaging pipeline progressively alters noise characteristics.
As a result, once a noise source is inserted at any stage of
the DCM pipeline, one should study its effects �error propa-
gation� throughout the rest of the DCM.

The DCM developed by Vora et al.8–11 has shown that
DCMs can successfully simulate the operation of “real”
cameras. However, only additive noise is included in the
model and no analytical simulation of the various noise
sources is attempted. Kolb et al.12 presented a DCM that
specifically addressed the issue of complex camera optics,
but not the issue of noise. Wach and Dowski13 presented a
sensor-design-specific analytical method for describing the
various sensor noise sources and emphasized on the readout
noise. They assumed that all sensor pixels have the same
response to light. This assumption is justified only for a
particular type of sensor. Recently,14,15 a model that incor-
porates extensive sensor and imaging pipeline parameter-
izations was presented. Although various noise sources are
included in that DCM, the procedure is considered additive,
and there is no discrimination between fixed pattern noise
sources. All Poisson random processes are approximated by
Gaussian distributions. This approximation performs well
only for high illumination levels.

The most important stages of the proposed DCM are the
optical system, the charge-coupled device �CCD� sensor
simulation including the noise module, and the transforma-
tion of the sensor values to a device-independent color
space. To form the red-green-blue �RGB� portions of a
color image with a single-sensor camera, a color filter array
�CFA� must be used. Since at each pixel of the sensor a
single color is recorded, the remaining colors must be in-
terpolated, using the color information from the neighbor-
ing pixels. This procedure is called demosaicking16–18 and
is another important stage of the DCM. In our noise mod-

ule, we include a different flexible method for simulating
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additive and multiplicative noise sources. This method uses
both Gaussian and Poisson number generators. As a result,
it works for both high and low illumination levels. Further-
more, we distinguish between all the noise sources associ-
ated with the CCD operation, and therefore achieve broader
parameterization. Model characterization is performed by
using computer-generated, sky-specific spectral training
sets. To calculate the appropriate 3�3 matrices that lin-
early transform sensor data to tristimulus values, we use
three different methods. These methods are new application
extensions of the methods described by Finlayson and
Drew.19 We prove that estimation of the transformation ma-
trices using sky-related training sets can improve the accu-
racy of the skylight color measurements. We also per-
formed error propagation analysis to investigate the noise
performance of the DCM. We derived a set of equations
that describes the noise propagation from its sources up to
the output of the DCM, including the demosaicking proce-
dure. We show that choosing the appropriate demosaicking
procedure is important, since it alters the noise characteris-
tics of the imaging pipeline.

Section 2 presents a short description of the DCM, while
Sec. 3 presents the various stages of the DCM in detail.
Specifically, in Sec. 3.1, we describe the optical system; in
Sec. 3.2, we emphasize on the CCD modeling; and in Sec.
3.3, we focus on the noise module. Section 3.4 outlines the
analog-to-digital conversion �ADC� module. Section 3.4
describes the formation of the Bayer CFA and the demosa-
icking strategies, while Sec. 3.5 discusses the matrix trans-
formations. In Secs. 3.3, 3.5, and 3.6 we also present the
error propagation equations. Finally, in Secs. 4.1 and 4.2,
we test the colorimetric performance of the model and the
accuracy of the derived noise propagation equations.

2 Model Description
Figure 1 shows a schematic of the single-sensor DCM im-
aging pipeline. The model simulates a linear color digital
still camera �DSC� equipped with an RGB Bayer pattern,20

Fig. 1 Digital image pipeline used for modeling
image sensor.
which is a CFA widely used in various single-sensor de-
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vices. We concentrate our study on CCD sensors, because
they exhibit better noise performance, compared to many
complementary metal oxide semiconductor �CMOS� imag-
ers, due to less on-chip circuitry.21 CCDs are also consid-
ered as linear devices.8,11,22 Although a small nonlinearity
may exist, it can be corrected if a linearization step is
added.

At the first stage of the model is the optical system. A
single thin lens with an aperture stop is used. This simpli-
fication does not impose a problem, since sky is a target
placed at an infinite distance from the observer, and clear
sky has very low spatial content. Furthermore, a simplified
optical system does not affect the noise performance of the
sensor, the interpolation of a flat field image, or the color
space transformations. However, the use of a lens system is
necessary to estimate the correct exposure, given the light-
ing in the scene.12 In this case the main purpose of the
camera optics is the conversion of radiance
L �W cm−2 sr−1� to irradiance E �W cm−2�. Since this DCM
will be used for sky color retrievals, as well as noise mod-
eling, attention is paid to the units and their physical mag-
nitudes. We preferred to use mixed SI �Système Interna-
tional� units, with units common to atmospheric physics
and radiation transfer models, for compatibility and effort-
lessness. The shutter controls the exposure of the CCD
surface.23 In our model, the shutter is considered ideal, con-
trolled only by the predetermined exposure time �t, and it
is not a function of position on the image plane. The shutter
controls the amount of radiant energy � �in joules� that
reaches the sensor surface.

Noise is injected in the model at the third stage of the
DCM. A noise module was created to introduce the neces-
sary data fluctuations. All noise and response characteristics
are considered similar to those of the Kodak KAF-5101 CE
image sensor.24 A linear analog to digital step is necessary
for the proper conversion of voltage to analog-to-digital
units �ADUs�. The useful digitization precision �number of
bits� is limited by the noise performance of the sensor.25

olor photographic camera using a single CCD
the c
During the fifth stage of the digital image pipeline, three
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demosaicking techniques are used to extract the three sen-
sor �RGB� channels from the Bayer CFA. First, we used the
bilinear interpolation �BI� algorithm,26 which is a simple
componentwise method.27 The other two methods are
called smooth hue transition interpolation26,28 �SHTI� and
effective color interpolation29 �ECI�. These algorithms are
spectral model-based16–18,29–31 as they utilize the essential
spectral information. Since the model is intended for flat-
field imaging there is no need to include edge sensing
algorithms.16–18,30–32 All methods incorporated in the DCM
are nonadaptive.

The last stage of the DCM is the conversion of the sen-
sor �RGB� values into the tristimulus XYZ, using CIE 1931
2-deg color matching functions33 �CMFs�. Since the model
is used for sky targets, we have implemented least square
regressions, incorporating sky specific information. We use
3�3 matrix transformations for calculating the transforma-
tion matrices.34 Three different methods are used. These
methods are based on the work of Finlayson and Drew19

and are called accordingly, sky point preserving maximum
ignorance least-squares regression �MaxIgnSPPLS�, sky ra-
diance least squares regression �SkyRadLS�, and sky point
preserving sky radiance least squares regression �SkyRad-
SPPLS�. To evaluate color performance of the DCM we use
CIE 1976 L*a*b* color space.34,35 The DCM was created by
using the Mathematica software.

3 Digital Image Pipeline

3.1 Optical System and Radiometry
For a single thin lens with transmittance Tlens, the mono-
chromatic irradiance E� on the image plane, given the
monochromatic radiance normal to the object plane L���, is
approximated by the image illumination equation12,23:

E� =
�TlensL���

4N2�1 + m/p�2 + 1
cos4 � . �1a�

A small area S is projected from the object to the image
plane, inclined at an angle � to the optical axis. The cos4

factor describes the variation of irradiance across the image
plane due to the lens, an effect known as natural
vignetting,23 and N is the relative aperture. Since the object
plane is considered to be at infinity, the image magnifica-
tion m is zero.23 Since the lens is assumed to be symmetri-
cal, the pupil magnification p is 1. Let �H and �V be the
horizontal and vertical components of angle �. In the case
of a 2-D image plane, the image illumination equation be-
comes

E� =
�TlensL���

4N2 + 1
cos4�arctan�tan2 �H + tan2 �V�1/2� . �1b�

To create the image we need to introduce some sensor char-
acteristics. Let f be the focal length. Let HH and HV �both
in millimeters� be the horizontal and vertical dimensions of
the CCD, respectively. All pixels form an array of NH
�NV photosites, equally spaced on the CCD surface. The
central photosite has indexing values �0,0�, while the upper-
right has �+NH /2 , +NV /2� and the lower-left has �−NH /2
−1,−NV /2−1�. The two angles �H and �V are related to the

pixel indexing numbers �n , l� by:
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�H = arctan� HH

NHf
n� �n = −

NH

2
− 1, . . . ,0, . . . ,

NH

2
� , �2a�

�V = arctan� HV

NVf
l� �l = −

NV

2
− 1, . . . ,0, . . . ,

NV

2
� . �2b�

3.2 Modeling the CCD Response to Radiance

Quantum efficiency �QE� Q�
k at wavelength � in nanom-

eters is defined as the number of signal electrons �e−� cre-
ated per incident photon,36 while k defines the recording
channel, from a total of K sensor classes �K=3�. A value of
k=1,2 ,3 denotes the R, G, and B channels, respectively.
According to Table 1, each photosite of the CCD is a
square of area Ap=6.8�6.8 �m. If we assume that the in-
cident irradiance is constant across the photosite surface,
the detector responsivity R�

k �e− J−1 cm2� at wavelength �
can be estimated by36

R�
k =

�10−9Q�
kAp

hc
�k = 1,2,3� , �3�

where c is the speed of light �m s−1�, h �J s� is the Planck
constant, and 10−9 �m nm−1� is a scaling factor.

To build a reliable DCM, we used many characteristics
of the Kodak KAF-5101CE image sensor. Figure 2 displays
the QE for the three channels.24 To limit the QE of the red
channel a near-IR �NIR� cutoff cover glass of 1 mm thick-
ness is simulated. The glass transmittance G� is wavelength
dependent �Fig. 2�. The linear sensor response in that case

11,34–37

Table 1 Image sensor specifications.25

KODAK KAF-5101CE Full-Frame Color CCD

Number of active pixels 2654�1996

Pixel size 6.8 �m�6.8 �m

Saturation signal 40,000 electrons and 720 m

Dynamic range 67 dB

Total sensor noisea 17 electrons

Total noise �sensor plus readout
noise�a

23 electrons

Dark signal �normal-maximum�a 3–40 mV/s

Photoresponse nonuniformity
�normal-maximum�a,b

8–15%

Charge transfer efficiency 0.999995

Horizontal clock frequency �data rate� 28 MHz

aOperational conditions are: temperature=333 K and integration
time=33 ms.
bPeak-to-peak difference between the maximum and the minimum
average signal levels of 146�146 blocks within the sensor.
becomes �no optical blur�:
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�n,l
k = �

�min

�max

R�
kG�E��n,l��t d� . �4�

The shutter is open for a period �t �in seconds� that deter-
mines the integration time, where the parameters �min and
�max define the spectral band of our interest. All simulations
are performed from �min=360 nm to �max=830 nm. The
responses �n,l

k are measured in number of electrons. Note
that the product of spectral irradiance E� �W cm−2 nm−1�
times the exposure time �t times the pixel area Ap is equal
to the spectral radiant energy �� �J nm−1�.

Regarding the imager geometry, we decided to use the
popular 24-�36-mm format with a variable number of pix-
els NH�NV. The saturation signal of the imager �sat is set at
40k electrons.24

To estimate the three RGB responses we must calculate
Eq. �4�. To do so we approximate the integral by a sum of
terms. The spectral band ��min,�max� is divided into evenly
spaced sampling points � j ,� j +�� �j=0,1 , . . . ,M�, where
M is the total number of points. Radiance, QE, and glass
transmittance become L�� j�=Lj, Q�j

k =Qj
k and G�=Gj. Sam-

pling interval is set8 to ��=1 nm �M =470�. By merging
Eqs. �1b�, �3�, and �4�, we produce a set of equations that
includes the optical system, the shutter and the CCD re-
sponse �k=1,2 ,3�:

�n,l
k = CCn,l

opt�
j=0

M

��min + j���Qj
kGjLj , �5a�

Cn,l
opt =

�Tlens
2 cos4�arctan�tan2 �H + tan2 �V�1/2� , �5b�

Fig. 2 Absolute QE curves for the Kodak KAF-
tance of BG 39 glass is for thickness of 1 mm.
4N + 1
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C =
Ap�t��

hc
� 10−9. �5c�

According to our experience, it is useful to exclude vignett-
ing during the simulations, especially when we want to
study the noise performance of the DCM. In that case, the
term related to the camera optics Cn,l

opt can be used leaving
out the cos4 terms of Eq. �5b�.

Three sensor responses are computed using Eqs. �5�.
This procedure is repeated for all the CCD photosites until
three arrays RS, GS, and BS, of NH�NV elements each, are
formed. As it is no longer necessary to use the n and l
indexing, the usual i and j indices �i=1, . . . ,NV and j
=1, . . . ,NH� are used from now on. All data produced at
this stage of the DCM are forwarded to the noise module.

3.3 Camera Noise Sources
For the simulation of multiple noise sources, we used the
Mathematica random number generators. Both Gaussian
and Poisson distributions are used. We assumed that all
noise sources that are not Poisson processes can be de-
scribed by a Gaussian distribution. The various noise
sources used in the DCM are13,25,38,39

1. Dark current shot noise �DCSN�; a Poisson distribu-
tion is used.

2. Bulk dark current �BDC�; in the model BDC, is in-
jected through DCSN.

3. Dark current nonuniformity �DCNU�; this noise re-
sults from the fact that each pixel generates a differ-
ent amount of BDC. A Gaussian distribution is used
to approximate the random differences between the
CCD elements.

4. Signal shot noise �SSN�; this is the fundamental limit
of noise performance in light detection systems. A

ull-frame CCD color image sensor.24 Transmit-
le at http://www.besoptics.com.
5101 f
Availab
Poisson random generator is used.
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5. Photoresponse nonuniformity �PRNU�; this noise is
caused by the fact that not all pixels demonstrate the
same sensitivity to light. A Gaussian distribution is
used.

6. Readout noise �RON�; RON is independent of the
measuring signal.40 We assume that all other noise
sources by the supporting circuitry are included under
RON. A Gaussian distribution is used.

RON also includes output amplifier noise sources like
white noise, and flicker or 1 / f noise.25 The 1/ f noise has an
inverse dependence on the sensor data rate. To simulate this
noise source under RON we assume that the CCD operates
under constant data rate as described in Table 1.

Another possible source of uncertainty, during the read-
out process, are the charge transfer efficiency41 �CTE� and
the related charge transfer inefficiency �CTI=1−CTE� of
the sensor. Although CTI is not a noise source, it can de-
grade the image of the camera, especially when the sensor
has a large number of pixels. We performed a number of
simulations, taking into account the CTI effect. The color
retrieval accuracy of the DCM was deteriorated. However,
when we assumed that the CTE magnitude is constant, we
were able to restore the recorded values. Simulation of the
CTI was performed at this stage of the DCM, while cancel-
lation of the CTI was performed after the ADC module.
Since the effect of CTI can be corrected, we decided not to
include it in this work. No other types of noise �e.g., reset
noise� are considered, since methods of suppression
exist.32,40,41

3.3.1 Noise module
This section describes the algorithm we created for the
noise module. All noise parameters presented in this section
are expressed in equivalent number of electrons.39 We esti-
mate the parameters of the noise module based on the
specifications of KAF-5101CE sensor.24

Let IDC �number of electrons pixel−1 s−1� be the dark cur-
rent generated on a photosite of area Ap �in centimeters
squared� at operational temperature T in kelvins. The rela-
tion between BDC and temperature is given by the empiri-
cal formula25:

IDC = 2.5 � 1015APidT1.5 exp�− Eg/�2kT�� , �6�

where id �nA cm−2� is the DC density defined25 at 300 K,
k �eV K−1� is the Boltzmann constant, and Eg �in electron-
volts� is the silicon bandgap. For the simulations presented
here id was set equal to 0.068558 nA cm−2 and the CCD
operational temperature was set24 equal to 333 K. For a
given exposure time �t in seconds the total charge QDC �in
number of electrons� caused by BDC is given by

QDC = IDC�t . �7�

We assume that the standard deviation 	 is equal to the root
mean square �rms� error or noise of the measured signal.
Let Qs �in number of electrons� be the light signal for a
single pixel. Let 	DCNU and 	PRNU be the standard devia-
tions of the DCNU and PRNU, respectively, modeled by
the Gaussian random generator. Let 	RON be the standard

deviation of RON, modeled by the same generator. For
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DCSN and SSN the amount of noise introduced 	DCSN and
	SSN is equal to �Poisson distributions�:

	DCSN = 	QDC, �8a�

	SSN = 	QS. �8b�

It is convenient to describe the random generators as
functions. The Gaussian generator fnorm�	 ,�� is controlled
by two parameters, the standard deviation 	 and the mean
value �. The Poisson generator fPoisson��� is controlled
only by the mean value. Each time the function is called, a
random number is generated. To simulate the noise sources
five arrays are created:

MDCSN = 
mi,j
DCSN
 = 
fPoisson�QDC�
 , �9a�

MDCNU = 
mi,j
DCSU
 = 
fnorm�	DCNU,1�
 , �9b�

MSSN
k = 
mi,j

SSN
 = 
fPoisson��i,j
k �
 , �9c�

MPRNU = 
mi,j
PRNU
 = 
fnorm�	PRNU,1�
 , �9d�

MRON = 
mi,j
RON
 = 
fnorm�	RON,0�
 . �9e�

Each of the preceding arrays contains the data fluctuations
from a single noise source. Array MSSN

k contains the num-
ber of signal electrons calculated by Eq. �5� and the asso-
ciated SSN. The mean values of the DCNU and PRNU
random generators are set equal to 1 ��=1�. These arrays
simulate the individual photosite capability to raise elec-
trons due to BDC and incident light according to Eqs. �7�
and �5�. Note that a value of �
1 indicates that more
electrons would be collected than those expected by Eqs.
�7� and �5�. Similarly, a value of ��1 indicates that less
electrons would be collected than those expected by Eqs.
�7� and �5�. If we define operator * as the element wise
multiplication of matrices, then matrix Mk= 
mi,j

k 
 is defined
by

Mk = MDCSN � MDCNU + MSSN
k � MPRNU + MRON. �10�

The newly derived matrix Mk merges through Eq. �10� the
CCD response to light and all the noise sources we wanted
to model. The new data �with noise� produced are for-
warded to the ADC module.

3.3.2 Error propagation equation for the noise
module

For the noise module to be successful it must reproduce the
typical photon transfer curve �PTC�. In Appendix B, we
derive the formulation that describes the error propagation
of the noise module. We must keep in mind that all opera-
tors in Eq. �10� are element wise and no correlation exists
between the noise sources. Implementing Eqs. �8�–�10� and
by using basic error propagation equations42 we can deter-
mine the standard deviation for the noise module �number

of electrons�:
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fPTC
k = �QDC + �̄k + �QDC	DCNU�2 + ��̄k	PRNU�2

+ �	RON�2�1/2, �11�

where �̄k is the mean electrons signal due to incident light.
The last relationship defines the CCD noise floor and the
signal levels that the model operates, being either shot
noise or PRNU limited.

Running some preliminary simulations with no signal
�i.e., �̄k=0�, the noise floor of the CCD is set at 	nf
=17.08 electrons with 	DCNU=0.2. RON is estimated to be
	RON equal to 15.7 electrons, giving an overall noise floor
of 23.0 electrons.24 Simulations are performed with
	PRNU=0.008 which results in peak to peak PRNU differ-
ences in the range of 8 to 15%. These differences were
calculated performing simulations on all 2654�1996 im-
ager pixels. The operating temperature is set to T=333 K.
These results are consistent with the performance of the
sensor, as described by the device specifications of Table 1.

3.4 Linear Analog-to-Digital Conversion
Let Cvc be the charge to voltage conversion factor. When
multiplied with the signal, it provides the conversion from
electrons to voltage �in millivolts�. For the sensor modeled
here,24 Cvc=0.018 mV/electron, and it is considered inde-
pendent from the signal level and the color channel.

Let Fround�x� be a function that returns the closest integer
of a real number x. Linear ADC expressed in ADUs is
defined as a function FADC�·�:

FADC�mi,j
k � = Fround�cbias + CvcaADCmi,j

k � , �12�

where aADC=3.268 ADUs mV−1 being a constant that de-
fines the slope of the mapping. Taking into account the
CCD noise performance, a 12-bit �ndig=12� digitization is
adequate. Since 12 bits introduce 4096 levels of signal �the
ratio �sat /	nf is equal to 2342�, and because DCM linearity
is important, we choose to introduce a biasing parameter
cbias equal to 1753 ADUs. All parameters of Eq. �12� are
the same for all sensor classes. The new matrices MADU

k

= 
mADU,i,j
k 
 are of the form:

MADU
k = 
FADC�mi,j

k �
 . �13�

These matrices contain the digital code values of the cam-
era. The noise characteristics are left unchanged during the
ADC step. The signal and noise samples are simply con-
verted from electrons into ADUs, multiplied by the
CvcaADC factor.

3.5 Bayer CFA Construction and Demosaicking
So far we have constructed three distinct arrays of digital
data, one for each sensor class. At this point, we can com-
bine these arrays to simulate the Bayer CFA. We chose to
incorporate a demosaicking stage in the DCM, because cal-
culating the missing color components in the acquired CFA
�sensor� image distorts the noise characteristics by intro-
ducing new demosaicked data.

Let MBayer= 
mi,j
 be the Bayer filter array of NV�NH
elements. This array is formed by sampling MADU

R , MADU
G ,

and MADU
B , respectively, to construct the color format of the
Bayer CFA.
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Now MBayer forms a gray-scale image due to the fact that
only a single measurement is available at each spatial
location.17 The two missing components are calculated
from the adjacent samples, using the BI, SHTI �Refs. 26
and 28�, and the ECI �Ref. 29� demosaicking processes.
SHTI is described as a constant hue-based interpolation.26

Red and blue are the chrominance channels and green is the
luminance channel, while hue is defined as the ratios R /G
and B /G �Ref. 26�. The hue modeling approach has been
used in demosaicking,17,30 single-sensor image zooming,43

demosaicked image postprocessing,44 and color image
enhancement.45 The ECI method can be viewed as SHTI
variant, operating on R-G and B-G color differences, in-
stead of the color ratios.29 A short description of the algo-
rithms is given in Appendix A. After the implementation of
the interpolation methods, three color arrays RADU, GADU,
and BADU, of NH�NV population are constructed. All ele-
ments of these three matrices are in units of ADUs, how-
ever, intermediate calculations are performed in float point
arithmetic.

In the following paragraphs we present the derived noise
propagation equations of the three demosaicking methods.
Since these algorithms are framewise operations, the par-
ticular analysis is valid only when applied to a uniform
portion of the image. Since the DCM is intended for flat-
field imaging, the sensor image can be regarded as uniform.

3.5.1 Noise performance of BI
The standard deviation of the CFA data is altered by demo-
saicking. In Appendix C we estimate the noise outcome
�	demos

r,g,b � of BI:

	demos
r,g,b = 	o

r,g,b� n − 1

n� − 1
+

1

m

n� − n − 1

n� − 1
�1/2

, �14�

where 	o
r,g,b is the initial error of the MBayer RGB elements

and m is the number of averaging neighbors during the
interpolation. The exact population of a single color pixels
is n, while the total population is n�=NH�NV. According
to Eq. �14�, the implementation of BI results in statistically
independent color channels. More approximate expressions
of Eq. �14� are given in Appendix C.

3.5.2 Noise performance of SHTI
In order to estimate the error propagation of SHTI we must
take into account parameters from other color channels,
since this method uses multiple channels to extract a single
color plane. Let n, v, and w be the exact populations of red,
green, and blue elements of the CFA. In Appendix D the
noise is estimated for the extracted chrominance planes
�	demos

x becomes 	demos
r for red and 	demos

b for blue�:

	demos
x =

1

2
� 1

�n� − 1���4n + 2v + w − 7��	o
x�2

+ �6v + 5w − 11�� x̄

ḡ
�2

�	demos
g �2�1/2

, �15�

where x̄ is the mean value of the chrominance plane inter-
polated, and ḡ is the mean value of green channel. In bilin-
ear interpolation the chrominance error generated by SHTI

¯ ¯ 2
depends on the squared ratio �x /g� of the measurements
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and the error 	demos
g of the demosaicked luminance plane.

In Sec. 4 we discuss why this is a major problem.
During the various steps of the SHTI �as described in

Appendix A�, the participating color channels or hues are
not always statistically independent. However, we derived
Eq. �15� assuming independence. We did so because the
derived equation still describes the main characteristics of
the noise performance of the DCM while remaining simple
and compact. According to Eq. �15� the implementation of
SHTI affects the statistical dependence of the interpolated
color channels. The elements of RADU and BADU are corre-
lated with the elements of GADU, while RADU and BADU are
uncorrelated with each other. Approximations of Eq. �15�
are provided in Appendix D.

3.5.3 Noise performance of ECI
This algorithm also exploits information from all color
channels. The ECI method uses information from the red
and blue channels to estimate the green pixels. Then ECI
uses the demosaicked green channel to calculate the miss-
ing red and blue values. This forced us to take into account
the presence of statistical correlations at certain ECI steps,
in order to derive the noise performance. Let r1 and r2 be
the correlation coefficients defined by Eq. �50�. These co-
efficients describe the statistical dependence between R and
B channels and the KR and KB domains. In Appendix E, the
equation for the noise of the demosaicked green channel is
derived:

	demos
g =

1

32
�9�	o

r�2 + 20�	o
g�2 + 9�	o

b�2 + 4	2r1	o
r�2�	o

g�2

+ �	o
r�2�1/2 + 4	2r2	o

b�2�	o
g�2 + �	o

b�2�1/2�1/2. �16�

We also estimated the noise output for the red or blue chan-
nel �the x and c notation is the same as SHTI� introducing

Table 2 Skyradiance sam

Number
of Samples

MODTRAN
Aerosol Type

Optical
Zenith �d

462 No aerosol 0–90, step

90 Ruralc

Vis=25 km
0–90, step

90 Rural
Vis=5 km

0–90, step

90 Urban
Vis=5 km

0–90, step

90 Tropospheric
Vis=50 km

0–90, step

90 Marine
Vis=23 km

0–90, step

a90 is for horizontal optical path, 0 is for zenith
bOptical path azimuth �degrees east of north�.
cVisibility �Vis� is defined as the meteorological
the r1�, r2�, and r3 correlation coefficients:

Journal of Electronic Imaging 043005-
	demos
x =

1

16
�9�	o

x�2 + 8�	o
g�2 + 5�	add

g→x�2 + 4�	add
g→c�2

− �8	2r1�	o
g + 4r2�	add

g→c���	add
g→x�2 − 2r3	add

g→x	o
x

+ �	o
x�2�1/2 − 10r3	add

g→x	o
x�1/2. �17�

Details for all the participating terms of Eqs. �16� and �17�
including estimation of 	add

g→x, are given in Appendix E.
Calculation of the magnitudes of the introduced r1, r2, r1�,
r2�, and r3 coefficients are presented in Sec. 4. Both equa-
tions do not include the populations of color pixels n, v, w,
and n�, as in the case of Eqs. �14� and �15�. We derived
Eqs. �16� and �17� assuming large CFA arrays to maintain a
limited size for these equations. According to Eqs. �16� and
�17�, the application of ECI results in all color channels
being statistically correlated. Approximate expressions of
Eqs. �16� and �17� are provided in Appendix E.

3.6 Color Space Transformations
Since this DCM is intended for a specific application, sky
specific radiance sets are needed for the estimation of the
proper color-signal transformations. The use of atmospheric
radiation transfer models is a standard method for realistic
rendering of skylight and outdoor images.46–48 To simulate
skylight, for a variety of atmospheric conditions, we used49

MODTRAN. A number of sky spectral radiance samples
were obtained against various aerosol types �clear atmo-
sphere, urban, rural, and marine�, observer line-of-site ze-
nith and azimuth angles, as well as day hours �sun geom-
etry�. The set consists of 912 radiance sets �at 1-nm
intervals�, all calculated for the same midlatitude geo-
graphic coordinates and for the 1976 U.S. standard atmo-
sphere. Details of the computer generated radiance samples
are given in Table 2. The CIE xy chromaticities of the
simulated skylight �Fig. 3�, exhibit similar scatter as real

49

enerated by MODTRAN.

Optical Path
Azimuth �deg�b

Greenwich Mean
Time �GMT, h�

0 45–180, step 45 6–12, step 1 or 2

0 90 and 180 6–12, step 2

0 90 and 180 6–12, step 2

0 90 and 180 6–12, step 2

0 90 and 180 6–12, step 2

0 90 and 180 6–12, step 2
ples g

Path
eg�a

5 or 1

5 or 1

5 or 1

5 or 1

5 or 1

5 or 1

view.

range.
experimental data obtained by others.
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The color characterization of the DCM is performed us-
ing three different least square methods. The first method is
a simple SkyRadLS that uses only the information from a
limited training dataset as described in Refs. 19 and 34. The
next two methods are new applications of the constrained
least square regressions.19 For the MaxIgnSPPLS, we esti-

Fig. 3 �a� CIE 1931 x and y chromaticities of
colorimetric performance. Planckian locus �Solid
�dashed line�. Gray lines present the errors of th
distinguish�. The arrow points the color of the sk
entire CIE 1931 diagram. �b� CIE 1931 x and y c
diameter of each circle is equal to the CIE-94 co
center of the cycle. The circles and the scale ar
mate the appropriate transformation matrix by utilizing

Journal of Electronic Imaging 043005-
knowledge of the sensor responses �maximum ignorance�,
plus the constraint of preserving the tristimulus values of a
single skylight radiance sample. The last method is the
SkyRadSPPLS. We use the same set, as in SkyRadLS with
the same constraint of the MaxIgnSPPLS.

Since the preceding training set is a subset of the initial

imulated skylight spectra and SkyRadSPPLS
overlaid with the Granada clear skylight locus50

formation matrix �most of them are too small to
to constrain regressions. The inset shows the

ticities and �ECIE94 color difference cycles. The
rence of the color represented by a point at the

rged to be visible.
912 s
line�

e trans
y used
hroma

lor defe
912 radiances, we had to determine the number of the ini-
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tial skylight samples to be used. Principal value decompo-
sition of skylight spectral power distributions �SPDs� for
various atmospheric conditions and observer-sun geom-
etries reveal strong correlations between samples.50 As a
result, the use of a small number of training samples is
adequate for completely describing the proper nonmean
subtracted covariance matrix that determines the linear
regression.19 In our case, we found that 20 spectral radiance
samples are adequate. Extensive calculations with different
or more populated training sets, gave little or no improve-
ment of the colorimetric characterization. For the con-
strained skylight point we used one that represents the av-
erage values of aerosol loading and sun-observer geometry.

Let �T be the imager 1�3 row vector output in ADUs.
Let X, Y, and Z be the CIE 1931 tristimulus values calcu-
lated from the CIE x̄, ȳ, and z̄ CMFs, respectively.35

Row vector xT is defined as xT= �X ,Y ,Z�. By using re-
gression we calculated the 3�3 matrix M that linearly re-
lates the sensor responses with the tristimulus values calcu-
lated for the same radiance. The colorimetric performance
of the fit for a particular color is judged upon:

xT � �TM . �18�

3.6.1 Noise propagation during color space
transformations

For the noise analysis of the DCM to be complete, the error
output of such transformations for a given noise level must
be estimated. Let ��= �	demos

r ,	demos
g ,	demos

b � be the 3�1
column vector of standard deviations for the sensor re-
sponses. The XYZ transformation results in tristimulus data
x that suffer from the inherent noise of the initial � data.
Let �� be the covariance matrix of all �T signals. The cor-
responding covariance matrix of xT from multivariable
statistics51 is �x=MT��M. When the signals xT are re-
garded as statistically independent, the matrix �x becomes
diagonal. The 3�1 error vector �x that contains the stan-
dard deviations of xT can be estimated from ��:

��xT�2 = ���T�2 · M2. �19�

The square power notation of the above equation is an
element-wise operation.

When the signals are statistically correlated, the �� ma-
trix must be defined. We create �� using three correlation
coefficients rrg, rrb, and rgb according to Eq. �2�. Each co-
efficient describes the correlation between red-green, red-
blue, and green-blue demosaicked channels, respectively:

�� = � �	demos
r �2 rrg	demos

r 	demos
g rrb	demos

r 	demos
b

rrg	demos
r 	demos

g �	demos
g �2 rgb	demos

g 	demos
b

rrb	demos
r 	demos

b rgb	demos
g 	demos

b �	demos
b �2 � .

�20�

4 Simulation Results
In the next few paragraphs we present the results from a
number of simulated measurements. In particular, we test
the colorimetric performance of the DCM and compare the

derived noise propagation equations against the operation

Journal of Electronic Imaging 043005-
of the DCM. All simulations were conducted with the
parameters of the model set, as described in the previous
sections.

4.1 DCM Color Output
In all the simulations we performed to assess the colorimet-
ric performance of the DCM, the noise module is activated
and the vignetting effect is excluded. To calculate the cor-
rect DCM response, a simulated dark frame is subtracted
from the illuminated flat field image. CIELAB color space
coordinates are estimated from the chromaticities calcu-
lated by CIE 1931 CMFs. These results are compared
against the output of the DCM. The comparison is per-
formed using the MaxIgnSPPLS, SkyRadLS, and SkyRad-
SPPLS transformations and the BI, SHTI, and ECI algo-
rithms, by calculating the Euclidean distance35 �Eab

* . These
results are converted into just noticeable differences �JNDs�
by dividing by 2.3. Since CIELAB color space is only ap-
proximately uniform, we also calculated color differences
using the CIE-94 color difference formulae.34 We tested the
DCM for all 912 samples and for 15�20 CCD pixels. All
simulations are conducted at 3 /4 of the saturation signal
independent of the color channel. The wavelength interval
���� is 1 nm and the exposure time ��t� is 0.033 s.

Results for the described simulations are illustrated in
Fig. 3�a� and 3�b� and Tables 3 �part a� and 4 �part a�. These
tests were performed using the ECI method. Minimum,
maximum, mean, and median values of JNDs and �ECIE94

units are presented for the three least-squares regressions.
According to these simulations, SkyRadLS and SkyRadSP-
PLS have significantly better performance than the Max-
IgnSPPLS. For SkyRadLS and SkyRadSPPLS, mean and
median values are below 0.1 JND, while for MaxIgnSPPLS
the same values are close to 0.2 JND. In all cases, the
largest portion of the set is kept below 0.25 JND, while all
of the samples produce errors below 0.5 JNDs.

Tables 3 �part b� and 4 �part b� present the standard
deviations of all the pixels in an image for every radiance
sample. Then the minimum, maximum, mean, and median
values of all the 912 standard deviations are estimated. Al-
though noise may have a pronounced effect on individual
image elements, the averaging of these elements can sup-
press noise. However, during our simulations we observed
noise originating errors �for a single pixel of a single mea-
surement� up to 1.8 JNDs.

Tables 5 and 6 were constructed similarly to Tables 3
and 4. This time the colorimetric performance of the vari-
ous demosaicking algorithms was tested using the SkyRad-
SPPLS transformation. According to Tables 5 �part a� and 6
�part a�, the colorimetric performance of all interpolation
methods is almost identical. However, there is significant
difference between the noise originating errors �Tables 5
�part b� and 6 �part b��. The SHTI method is more accurate
with a mean �ECIE94 error of 0.23 units. The ECI and the
BI methods resulted in 13 and 26% increases of the mean
error values �Table 6 �part b��.

4.2 Evaluation of the Noise Propagation Equations
In this section, the DCM is used, while introducing the
same amount of signal �electrons� to all three sensor classes
and subsequently raising the signal level. The output of the

DCM is uniform, CIE XYZ images �no vignetting�, of 30
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�40 pixels. The standard deviations and signal-to-noise ra-
tios �SNRs� of these images are calculated and compared
against the theoretical noise analysis of the system. To
study the noise performance of the DCM, we used the PTC
Eq. �11� and compensated the results for the ADC stage. To
study the BI demosaicking method, we used Eqs. �14� and
�39�. For the SHTI method, we used Eqs. �15� and �48�.
Performance of the ECI method was evaluated using Eqs.
�16� and �17�. Finally, Eqs. �19� and �20� were used to
estimate the magnitude of the output errors due to the color
space transformations. Table 7 summarizes the statistical
evaluation of the error propagation equations, for the three
demosaicking methods. The performance of the noise

Table 3 Colorimetric performance �a� and

�a� Colorimetric Perfor

BG39 NIR Glass
�1/10 JND

�%�
�1/4 JND

�%�

MaxIgnSPPLS 26.0 57.8

SkyRadLS 81.5 100

SkyRadSPPLS 90.57 99.34

�b� Noise Originating

Min JND Ma

MaxIgnSPPLS 0.13

SkyRadLS 0.14

SkyRadSPPLS 0.13

In Part �a�, percentages of the samples with �
method and for various color space transformat
In part �b�, min, max, mean, and median standa

Table 4 Colorimetric performance �a� and no

�a� Colorimetric perform

BG39 NIR Glass �1/10 �%� �1/4 �%�

MaxIgnSPPLS 22.0 45.3

SkyRadLS 65.2 98.2

SkyRadSPPLS 73.46 99.01

�b� Noise originating er

Min M

MaxIgnSPPLS 0.18 0

SkyRadLS 0.17 0

SkyRadSPPLS 0.15 0

In part �a�, percentages of the samples with �E
units, for the ECI method and for various color

In part �b�, min, max, mean, and median standard dev
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propagation equations is studied at all stages of the DCM
�the noise module, the interpolation, and the color transfor-
mation�. At each evaluation stage, all noise propagation
equations from the preceding stages also participate.

4.2.1 Evaluation of BI noise propagation equations

Figure 4 displays the noise output of the DCM against the
error propagation equations for the case of BI and the
SkyRadSPPLS regression. Calculations were performed us-
ing Eq. �14�. However, similar results are obtained when

originating errors �b�—Euclidean distance.

—Euclidean Distance

/2 JND
�%� Min Max Mean Median

100 0.008 0.45 0.200 0.219

100 0.004 0.24 0.067 0.063

100 0.003 0.34 0.057 0.050

Euclidean Distance

Mean JND Median JND

0.17 0.18

0.18 0.18

0.17 0.17

ss than 0.1, 0.25, and 0.5 JNDs, for the ECI

iations are estimated from all samples.

iginating errors �b�—CIE94 color difference.

CIE94 color difference.

2 �%� Min Max Mean Median

7.7 0.006 0.844 0.268 0.298

00 0.006 0.36 0.090 0.080

00 0.003 0.49 0.079 0.069

IE94 color difference.

Mean Median

0.26 0.26

0.27 0.28

0.26 0.27

less than 0.1, 0.25, and 0.5 of color difference
transformations.
noise

mance

�1

Errors—

x JND

0.22

0.23

0.22

Eab
* le

ions.
rd dev
ise or

ance—

�1/

9

1

1

rors—C

ax

.42

.39

.38

CIE94

space

iations are estimated from all samples.
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we applied the approximation of Eqs. �39�. According to
Table 7, the agreement between the DCM operation and the
noise analysis is excellent.

Theoretical and simulated XYZ SNRs for the particular
configuration of the imaging pipeline were also calculated.
The abrupt scaling of the SNRs is due to the quantization of
the signal. The maximum SNR of the sensor �for a 40 k
electrons signal with the associated shot noise� is about
46 dB. However, the DCM output exhibits maximum SNRs
of 44.2, 43.3, and 40.5 dB for the X, Y, and Z channels,
respectively. SNR values are not the same for all channels.

Table 5 Demosaicking colorimetric performanc
Euclidean distance.

�a� Demosaicking Colorimetric

BG39 NIR Glass
�1/10 JND

�%�
�1/4 JND

�%�

BI 90.67 99.45

SHTI 91.23 99.45

ECI 90.57 99.34

�b� Demosaicking Noise Orig

Min JND Ma

BI 0.16

SHTI 0.12

ECI 0.13

In part �a�, percentages of the samples with �E
SPPLS transformation and for various demosai
In part �b�, min, max, mean, and median standa

Table 6 Demosaicking colorimetric performanc
CIE94 color difference.

�a� Demosaicking Colorimetric P

BG39 NIR Glass �1/10 �%� �1/4 �%�

BI 75.90 98.90

SHTI 75.48 99.01

ECI 73.46 99.01

�b� Demosaicking Noise Origin

Min M

BI 0.18 0

SHTI 0.16 0

ECI 0.15 0

In part �a�, percentages of the samples with �E
units, for the SkyRadSPPLS transformation and

In part �b�, min, max, mean, and median standard dev
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The Z channel of the CIE XYZ tristimulus has the lower
SNRs. Since, in many cases, sky radiance is dominated by
the blue portions of the spectrum, higher SNRs would be
desirable. The main reason for this behavior is the data
transformation to CIE XYZ color space. An initially spheri-
cal error cloud tends to be elongated in one or more
directions,52 creating the different SNR curves in Fig. 4 for
the same initial signal. Closer investigation of all the re-
gression methods used in our study reveals that this is the
general behavior of the DCM.

nd demosaicking noise originating errors �b�—

rmance—Euclidean Distance

/2 JND
�%� Min Max Mean Median

100 0.006 0.33 0.058 0.051

100 0.004 0.30 0.058 0.053

100 0.003 0.34 0.057 0.050

Errors—Euclidean Distance

Mean JND Median JND

0.20 0.20

0.15 0.15

0.17 0.17

than 0.1, 0.25, and 0.5 JNDs, for the SkyRad-
ethods.

iations are estimated from all samples.

nd demosaicking noise originating errors �b�—

ance—CIE94 Color Difference

/2 �%� Min Max Mean Median

100 0.004 0.48 0.078 0.068

100 0.006 0.45 0.079 0.071

100 0.003 0.49 0.079 0.069

rrors—CIE94 Color Difference

Mean Median

0.29 0.28

0.22 0.22

0.26 0.27

less than 0.1, 0.25, and 0.5 of color difference
rious demosaicking methods.
e �a� a

Perfo

�1

inating

x JND

0.25

0.20

0.22

ab
* less
cking m
e �a� a

erform

�1

ating E

ax

.55

.36

.38

CIE94

for va

iations are estimated from all samples.
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Table 7 Evaluation of the error propagation equations.

DCM Stage and
Participating
Noise
Propagation
Equations

Channel

Mean of Residuals

�R=
1
n

�
i=1

n

�Oi−Pi�

/�Range
of observed values�

Slope

m=
�i=1

n OiPi− �1/n��i=1
n Oi�i=1

n Pi

�i=1
n Oi

2− �1/n���i=1
n Oi�2

Correlation Coefficient

�=
mso

sp

PTC, �11� R-G−B 0.010 1.02 0.98

BI, �11� and �14� R-B 0.006 1.03 0.98

G 0.010 1.04 0.98

BI, �11� and �39� R-B 0.001 1.02 0.98

G 0.010 1.04 0.98

SkyRadSPPLS, �11�, �14�, and �19� X 0.008 1.05 0.98

Y 0.006 1.04 0.98

Z −0.002 1.03 0.97

SkyRadSPPLS, �11�, �39�, and �19� X 0.003 1.03 0.98

Y 0.004 1.02 0.98

Z −0.008 1.00 0.97

SHTI, �11� and �15� R-B 0.012 1.15 0.97

G Same as BI green channel

SHTI, �11� and �48� R-B −0.045 0.78 0.97

G Same as BI green channel

SkyRadSPPLS, �11�, �15�, and �19� X 0.003 1.10 0.97

Y −0.024 0.97 0.97

Z 0.039 1.27 0.97

SkyRadSPPLS, �11�, �48�, and �19� X −0.053 0.76 0.97

Y −0.062 0.77 0.97

Z 0.039 0.87 0.98

ECI, �11�, �16�, and �17� R-B 0.004 0.98 0.97

G 0.012 1.03 0.97

SkyRadSPPLS, �11�, �16�, �17�, and �20� X 0.004 0.99 0.97

Y 0.008 1.01 0.97

Z −0.007 0.97 0.97

Skylight samples �11�, �16�, �17�, and �20� X 0.062 1.10 0.99

Y 0.030 1.03 0.99

Z −0.007 0.95 0.98

Evaluation of the error propagation equations estimated at various stages of the DCM. Three cases are presented �i.e., BI, SHTI, and ECI with
luminance channel biased�. The last rows present the equations evaluation for ECI and MaxIgnSPPLS for all MODTRAN generated samples.
Observed values �Qi� are derived from DCM operation while predicted values are calculated using the noise propagation equations. Also, so

and sp are the standard deviations of observed and predicted noise.
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4.2.2 Evaluation of SHTI noise propagation
equations

Figure 5 displays the noise output of the DCM against the
error propagation equations for the case of the SHTI and
the SkyRadSPPLS transformation. Application of Eqs. �15�
or �48� gives poorer results when compared to the DCM
operation. According to Sec. 3.5, we derived Eqs. �15� and
�48� assuming that all participating variables during the ex-
ecution of the SHTI algorithm are statistically independent.
Although SHTI exhibits fewer correlations if compared to
the ECI method, the preceding assumption is not always

Fig. 4 Simulated camera operation noise res
calculated using Eqs. �11�, �14�, and �19�. Sim
transformation and the BI method.

Fig. 5 Simulated camera operation noise result
using Eqs. �11�, �14�, �15�, and �19�. Simulation

mation and the SHTI method. Gray lines are plotted u

Journal of Electronic Imaging 043005-1
correct. Despite this problem, both Eqs. �15� and �48� are
relatively accurate and successfully describe the noise
propagation of SHTI �Table 7�. The DCM operation with
SHTI exhibits maximum SNRs of 42.0, 43.4, and 39.5 dB
for the X, Y, and Z channels, respectively.

Another problem originates from the nature of the SHTI
algorithm itself. According to Eq. �15�, the amount of noise
injected from the green channel depends on the ratio of
chrominance to luminance �x̄ / ḡ�. A value larger than 1 re-
sults in amplification of the injected G channel noise. This
is likely to create severe noise artifacts in the final image in

d SNR ratios. CIE XYZ predicted noise was
ns were performed using the SkyRadSPPLS

NRs. CIE XYZ predicted noise was calculated
performed using the SkyRadSPPLS transfor-
ults an
ulatio
s and S
s were
sing the approximate Eqs. �11�, �48�, and �19�.
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the case of very high chrominance and very low luminance
values. To prove our point, we performed simulations in-
troducing unequal amounts of signal to the RGB channels.
During these simulations the B channel signal was always
20 times higher than the G channel signal level �B /G
=20�. We also varied the B channel signal level from 0 up
to 40 k electrons. Results of the B noise levels before and
after the SHTI demosaicking algorithm are presented in
Fig. 6. According to Fig. 6, for an input signal level of 1 k
electrons, the SHTI algorithm produced noise levels that
would be normally expected at an input signal level of 10 k
electrons. We believe that implementation of SHTI in a real
single-sensor camera can be potentially problematic.

4.2.3 Evaluation of ECI noise propagation equations
To predict the noise output of the DCM using Eqs. �16� and
�17�, we estimated the correct values for the r1, r2, r1�, r2�,
and r3 correlation coefficients. We also used Eq. �20� in-
stead of Eq. �19�, since color channels are statistically cor-
related after the ECI demosaicking stage. Since correlation
coefficients are also present in Eq. �20�, we estimated the
correct rrg, rrb, and rgb values. The correlation coefficients

Fig. 6 Simulated DCM noise output for the B channel. The plot
presents the noise output prior to SHTI and after the demosaicking
procedure. DCM input was adjusted to raise higher signal levels for
the B channel and lower signal levels for the G channel.

Table 8 Correlation coefficients for the ECI error

�a� Correlation Coefficients for

Color Channel R

Correlation coefficients r1 r2

Equal RGB signal −0.65 −0.65

MODTRAN data −0.44 −0.73

�b� Correlation Coef

Correlation coefficients rrg

Equal RGB signal 0.74

MODTRAN data 0.81
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of Eqs. �16� and �17� were estimated according to Eq. �50�.
For this purpose, we performed subsequent runs of the
DCM and we calculated the variance and covariance of the
various channels and domains that participate during the
ECI algorithm execution. The correlation coefficients of
Eq. �20� were estimated in a similar manner. Calculated
values of the various coefficients are presented in Table 8.
Since the values of the correlation coefficients depend on
the relative magnitude of the color channels, we consider
two cases.

In the first case, the correlation coefficients were deter-
mined for the same amount of signal in the RGB channels.
Figure 7 displays the noise output of the DCM against the
error propagation equations for the case of ECI and the
SkyRadSPPLS transformation. As shown in this figure, the
introduction of covariances in the derivation of the noise
propagation equations gave excellent results �Table 7�. The
DCM operation with ECI exhibits maximum SNRs of 41.7,
42.2, and 40.6 dB for the X, Y, and Z channels, respec-
tively.

In the second case, we calculated the mean value of each
coefficient for all 912 skylight samples. Since each sample
has a unique set of correlation coefficients the estimated
noise using Eqs. �16�, �17�, and �20� is only approximate.
The coefficients presented in Table 8 represent the mean
values of the 912 sets of coefficients. According to Fig. 8
and Table 7 �last rows�, the predicted performance is simi-
lar to the observed performance. This simplifies the prob-
lem of estimating the noise propagation for skylight
samples in the future, since the described coefficients can
be used.

5 Conclusion
The DCM described in this study has many applications.
Extended parameterization of the CCD model enables the
simulation of the colorimetric and noise performance of
various CCD sensors, as embedded in the imaging pipeline,
before hardware implementation. Since the model input of
the DCM is spectral radiance, it can be used to estimate the
color output of various atmospheric radiation models, like
MODTRAN, or it can be used with measured sky radiance
data.

gation equations �a� and for SkyRadSPPLS �b�.

I Error Propagation Equations

G B

r2� r3 r1� r2� r3

0.41 0.64 0.41 0.41 0.64

0.45 0.40 0.31 0.32 0.63

for SkyRadSPPLS

rrb rgb

0.64 0.74

0.68 0.68
propa

the EC

r1�

0.41

0.57

ficients
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In this study, we derived a set of error propagation equa-
tions, such as Eqs. �11�, �14�, and �15�. These equations
form a separate noise model apart from the DCM. This
“new” model facilitates the investigation of the noise per-
formance of a digital imaging pipeline from the CCD-
generated electrons up to the XYZ tristimulus values. Al-
though the DCM with the noise module gives more
accurate results, it is computationally time consuming and a
much more complicated procedure, compared to the
straightforward implementation of the noise equations.

Using the same analysis, we investigated a different ap-
proach of demosaicking algorithms. Since such methods
become more complicated as they progress, little attention
is paid to the noise performance. When CFA cameras are
used as colorimeters, the overall accuracy of the system
might be degraded due to poor choice of the demosaicking
method.

Taking into account the color output performance of
Sec. 4.1, both SkyRadLS and SkyRadSPPLS methods gave

Fig. 7 Simulated camera operation noise result
using Eqs. �11�, �16�, �17�, and �20�. Simulations
and the ECI method.

Fig. 8 Simulated camera operation noise resu
predicted noise performances for the ECI metho

the x=y. Axis units are arbitrary
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accurate measurements of skylight color. However, to mea-
sure color accurately, we must either use a low resolution
CCD camera equipped with narrow field of view �FOV�
lenses, or a high-resolution CCD camera with wider FOV
lenses. Both setups will produce sky images that contain
uniform flat-field segments. This enables the estimation of
the mean camera response for various sky positions. Since
cloudless sky during daytime is a very bright target, the
signal of the sensor will be high and the camera will work
in the shot-noise-limited region. Cooling the CCD will not
improve measurement accuracy, since BDC is small com-
pared to SSN. To increase color recovery accuracy from a
single pixel, or to reduce the number of averaged pixels, a
sensor with an increased photosite area, or a higher satura-
tion signal should be used.

In Section 4.2, we tested the noise equations against the
noise performance of the imaging pipeline and we found
that there were consistent with the noise output of the
DCM. Closer investigation of Eq. �15� made apparent a

SNRs. CIE XYZ predicted noise was estimated
performed using SkyRadSPPLS transformation

912 skylight samples. CIE XYZ observed and
the SkyRadSPPLS transformation. Solid line is
s and
were
lts for
d and
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drawback of SHTI. In the worst case scenario of an image
with high chrominance and low luminance, the noise of the
CFA may multiply and severely deteriorate image quality.
For this reason, the SHTI method is unsuitable for our pur-
pose.

6 Appendix A: Description of the Demosaicking
Methods

6.1 BI
Consider an array of pixels as shown in Fig. 9. At position
4,3 only a B pixel is available, that is; B4,3. To estimate the
G value, G4,3, we use the neighboring pixels, G3,3, G4,4,
G5,3, and G4,2. The interpolated value is calculated as
G3,4= �G3,3+G4,4+G5,3+G4,2� /4. To determine R4,3 we cal-
culated R4,3= �R3,2+R3,4+R5,4+R5,2� /4. Interpolation for
the rest of the pixels is carried out in the same way.

6.2 SHTI
In the case of SHTI, the R and B pixels are assigned to be
the chrominance channels and G to be the luminance chan-
nel. Hue is defined as the ratios R /G and B /G. Interpola-
tion is carried out in the hue domain. The interpolation of G
pixels is the same as BI.

For the case of B pixels there are two subcases. For the
estimation of a B pixel at a G position the adjacent blue
pixels are placed horizontally or vertically of the G pixel.
For the case of B4,4, this is given by B4,4=G4,4�B4,3 /G4,3

+B4,5 /G4,5� /2. For the estimation of a B pixel at an R po-
sition, all adjacent pixels are placed diagonally of the R
pixel. The value of B3,4 is estimated by B3,4
=G3,4�B2,3 /G2,3+B2,5 /G2,5+B4,5 /G4,5+B4,3 /G4,3� /4. The
interpolation of the R pixels is similar.

6.3 ECI
ECI exploits the correlation between RGB channels. This
method is similar to SHTI but less complex. We define KR
and KB as G−R and G−B, respectively. Interpolation is
carried out in the KR and KB domains, while this time the G
channel interpolation uses information from the R and B
channels.

To estimate a G value at a R position, such as G3,4, we
calculate all KR values at the neighboring G pixels. We
estimated KR2,4 as KR2,4=G2,4− �R1,4−R3,4� /2, and calcu-

Fig. 9 Bayer CFA pattern.
lated KR3,5, KR4,4, and KR3,3 in the same way. The G pixel is
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calculated as G3,4=R3,4+ �KR2,4+KR3,5+KR4,4+KR3,3� /4.
Estimation of a G value at a B position is performed in the
KB domain.

To interpolate an R pixel at a G position, such as R4,4,
we always interpolate in the KR domain. The R value is
estimated as R4,4=G4,4− �KR3,4+KR5,4� /2. A B pixel inter-
polation at a R position, such as B5,4, is always carried out
in the KB domain. In that case, B5,4 is calculated as B5,4
=G5,4− �KB4,5+KB6,5+KB6,3+KB4,3� /4. This time, G5,4 is an
interpolated G value.

7 Appendix B: Noise Propagation Equations of
the Noise Module

Let z be an arbitrary function of a ,b , . . . and variables z
= f�a ,b , . . . �. Let �a ,�b , . . . be the noise elements of these
variables approximated by the standard deviations. The fi-
nal error of z is given by42:

��z�2 = � �z

�a
�a�2

+ � �z

�b
�b�2

+ ¯ . �21�

It is assumed that the variables are statistically independent
and the standard deviations are small42 compared to a and
b. Otherwise, higher order terms must be taken into
account.51 Most of the times Eq. �21� takes the form of a
simple sum of squares.

The mean values of matrices MDCSN, MDCNU, MSSN,
MPRNU, and MRON are denoted as m̄DCSN, m̄DCNU, m̄SSN,
m̄PRNU, and m̄RON, respectively. These mean values are

m̄DCSN = QDC, �22a�

m̄DCNU = 1, �22b�

m̄SSN = �k, �22c�

m̄PRNU = 1, �22d�

m̄RON = 0, �22e�

where �k is the electron signal due to incident light inde-
pendent of position of the photosite �no vignetting�. Keep-
ing in mind that all operators of Eq. �10� are elementwise,
and by implementing Eq. �21� on the product
MDCSN�MDCNU= 
ui,j
= 
mi,j

DCSN·mi,j
DCNU
, the variance is es-

timated:

��u

ū
�2

= �	DCSN

QDC
�2

+
�	DCNU�2

1
. �23�

Since MDCNU randomly rescales the MDCSN array �element
by element� and because of Eq. �22b� the mean value of
MDCSN is left unchanged. Taking into account Eq. �8a� the
latter equation is simplified:

��u�2 = QDC + �QDC	DCNU�2. �24�

For the case of the signal matrix product MSSN�MPRNU
= 
vi,j
= 
mi,j

SSNP·mi,j
PRNU
, derivation of variance ��vk�2 for
each color channel is similar to Eq. �24�:
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��vk�2 = �k + ��k	DCNU�2. �25�

Taking into account Eqs. �21�, �24�, and �25� and the stan-
dard deviation of readout noise 	RON we calculate the noise
equation:

��mk�2 = QDC + �k + �QDC	DCNU�2 + ��k	PRNU�2 + �	RON�2.

�26�

8 Appendix C: Noise Propagation of BI
Derivations of the following equations are valid only for
flat-field portions of images. Let 	o and 	demos be the stan-
dard deviations of the initial and the interpolated data sets
xi. The data populations �number of pixels� are n and n�,
respectively. Since k new elements are added, n�
n and
k=n�−n. The new data consist of the old values and the
new demosaicked ones: x1 ,x2 , . . . ,xn−1 ,xn , . . . ,xn�−1 ,xn�.
Variances for both data sets are given by

�	o�2 =
1

n − 1�
i=1

n

�xi − x̄�2, �27�

�	demos�2 =
1

n� − 1�
i=1

n�

�xi − x̄�2, �28�

where x̄ is the mean value. Since data are interpolated, both
sets have the same mean value x̄. Equation �28� can be
restated by discriminating the old from the new values:

�	demos�2 =
1

n� − 1
��

i=1

n

�xi − x̄�2 + �
i=n+1

n�

�xi − x̄�2 . �29�

Equation �29� is rewritten taking into account the k new
elements added, of �	add�2 variance:

�	demos�2 = �1 −
k

n� − 1
��	o�2 +

k − 1

n� − 1
�	add�2, �30�

�	add�2 =
1

k − 1�
i=1

k

�xi − x̄�2. �31�

For a new element xadd with m neighbors, interpolation can
generally be described by

xadd =
1

m
�

1

m

xi. �32�

Using Eq. �32� and taking into account Eq. �21�, the miss-
ing variance �	add�2 is estimated:

�	add�2 = � 1

m
�2

�	1�2 + � 1

m
�2

�	2�2 + ¯ +
1

m
�	m�2

= � 1

m
�2

�
i=1

m

�	i�2, �33�

2 2 2
where �	1� , �	2� , . . ., �	m� are the variances of the ele-
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ments taking part in the interpolation. These errors depend
on the variance of the initial set so they must all be equal to
�	o�2. Variance �	add�2 becomes

�	add�2 =
1

m
�	o�2. �34�

Substituting Eq. �34� into Eq. �30�, the error dispersion of
bilinear interpolation can be calculated:

	demos = ��1 −
k

n� − 1
��	o�2 +

k − 1

n� − 1

1

m
�	o�21/2

. �35�

The previous equation can be further simplified. If we sub-
stitute k=n�−n in Eq. �35�, we find

	demos = 	o� n − 1

n� − 1
+

1

m

n� − n − 1

n� − 1
�1/2

. �36�

For the Bayer CFA, the number of green pixels is
roughly twice the number of one chrominance �red or blue�
pixels. Let p be the population of one chrominance pixels.
The total number of pixels is n�=2p+ p+ p=4p. For the
green plane, the interpolation m value must be substituted
from its mean, since the number of neighbors is not con-
stant across the CFA. The magnitude of m tends to a value
of 4 as the CFA becomes more populated. For that case,
�n=2p, m=4�, Eq. �36� becomes

	demos
g = 	o

g�5 − 10p

4 − 16p
�1/2

. �37�

By simulating the Bayer CFA construction we found out
that for the red or blue plane interpolation the mean value
of m tends to 2.66. In this case, �n= p, m=2.66�:

	demos
r,b = 	o

r,b� 3.66 − 5.66p

2.66 − 10.64p
�1/2

. �38�

For a large number of photosites, the preceding equations
are approximated by

	demos
r,b = 	o

r,b	0.53 �39a�

	demos
g = 	o

g	5/8. �39b�

The preceding results indicate that during bilinear interpo-
lation, the noise is decreased by a constant of 0.73 for the
red or blue color planes and by 0.79 for the green regard-
less of the CFA elements magnitude.

9 Appendix D: Noise Propagation of SHTI
When SHTI is utilized, the green plane is bilinear interpo-
lated. The noise of the interpolated green channel can be
estimated by Eq. �36� or Eq. �39�. Let x̄ be the mean value
of the remaining colors, red or blue, while ḡ is the mean
value of BI green. Let n be the CFA population of one
chrominance interpolated plain, v be the number of green
pixels, and w be the other chrominance pixels. The total
population is n�=n+v+w. Since the SHTI procedure de-

pends on whether or not we calculate a chrominance value
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at a luminance point, we must break the variance of Eq.
�28� into three discrete sums. The noise of the demosaicked
chrominance channels will be

�	demos
x �2 =

1

n� − 1��
i=1

n

�xi − x̄�2 + �
i=1

v

�xi − x̄�2

+ �
i=1

w

�xi − x̄�2 . �40�

Let 	o
x be the original noise of a particular CFA color

�red or blue�. Let 	add
x→g be the added error from the inter-

polation of a chrominance value at a green position
�x→g, e.g., blue at a green position�. Also 	add

x→c is the error
from interpolation at the remaining chrominance position �
x→c, e.g., blue at a red position�. We must discriminate the
two cases, since a different number of neighbors partici-
pates at each one. The final error can be restated as

�	demos
x �2 =

n − 1

n� − 1
�	o

x�2 +
v − 1

n� − 1
�	add

x→g�2 +
w − 1

n� − 1
�	add

x→c�2.

�41�

Now, we estimate the added noise 	add
x→g,c for both cases. By

following the steps of the algorithm, and utilizing Eqs. �21�
and �34�, the added noise is estimated:

�	add
x→g,c�2 =

1

m
��	o

x�2 + �x̄/ḡ�2�m + 1��	demos
g �2� . �42�

The last equation incorporates the transformation of data
into hue ratios, the averaging of ratios, and the calculation
of the interpolated chrominance plus the final restoration of
data back to chrominance values. For the case of a chromi-
nance value at a green position �m=2� Eq. �42� becomes:

�	add
x→g�2 =

1

2
�	o

x�2 +
3

2
�x̄/ḡ�2�	demos

g �2, �43�

and for all other cases �m=4�,

�	add
x→c�2 =

1

4
�	o

x�2 +
5

4
�x̄/ḡ�2�	demos

g �2. �44�

By substitution of Eqs. �43� and �44� into Eq. �41�, we
calculate the variance of noise �	demos

x �2 for the demosa-
icked chrominance channels:

�	demos
x �2 =

1

4�n� − 1���4n + 2v + w − 7��		
x �2

+ �6v + 5w − 11�� x̄

ḡ
�2

�	demos
g �2 . �45�

As described in Appendix C, for n�=4p, v=2p, and n=w

= p. Thus, Eq. �45� can be rewritten as
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�	demos
x �2 =

1

16p − 4
��9p − 7��	o

x�2

+ �17p − 11�� x̄

ḡ
�2

�	demos
g �2 . �46�

For large values of p the preceding equation is simplified:

	demos
x =

1

4
�9�	o

x�2 + 17� x̄

ḡ
�2

�	demos
g �21/2

. �47�

For the case of ḡ� x̄, Eq. �47� can be further simplified:

	demos
x =

3

4
	o

x = 0.75	o
x . �48�

10 Appendix E: Noise Propagation of ECI
The use of Eq. �21� requires that all variables are statisti-
cally independent. This does not apply for the ECI method.
Let z be an arbitrary function of x1 ,x2 , . . ., xk , . . ., xn vari-
ables that are not independent, z= f�x1 ,x2 , . . . ,xk , . . . ,xn�.
Let 	k be the standard deviation of xk. The variance of z,
	z

2, is given by

	z
2 = �

k=1

n � �f

�xk
�2

	xk

2 + 2�
k=1

n−1

�
l=k+1

n
�f

�xk

�f

�xl
	�xk,xl� , �49�

where 	�xk ,xl� is the covariance of xk and xl. Covariance is
related to correlation coefficient r�xk ,xl� and 	k and 	l:

	�xk,xl� = r�xk,xl�	xk
	xl

, − 1  r�xk,xl�  + 1. �50�

This analysis is similar to that performed in Appendices
C and D. However, we must consider that certain variables
that participate in particular steps of the ECI are statisti-
cally correlated. We will estimate first the noise propaga-
tion for the green channel. Since interpolation depends on
whether a green value at a blue or red pixel is estimated, we
start with an equation similar to Eq. �41�:

�	demos
g �2 =

n − 1

n� − 1
�	add

g→r�2 +
v − 1

n� − 1
�	o

g�2 +
w − 1

n� − 1
�	add

g→b�2.

�51�

Using Eqs. �49� and �50�, the variance of all the interpo-
lated green values at red positions, �	add

g→r�2, can be esti-
mated:

�	add
g→r�2 = �	o

r�2 + �	add
KR �2 + 2r1	o

r	add
KR , �52�

where �	add
KR �2 is the added variance from the calculation of

the mean value for the KR neighbors. The red pixel and the
neighboring KR values are correlated, and r1 is the correla-
tion coefficient. According to Eq. �32�, �	add

KR �2 is estimated
as equal to �	add

KR �2= �1/4�	KR

2 , and 	KR

2 is the variance of the
KR domain. Since KR values are calculated from different
positions of the green and red array, they are uncorrelated
with each other. If we consider the interpolation of the red
values in order to estimate the G−R value �KR� the vari-

KR 2
ance, �	add� , becomes
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�	add
KR �2 =

1

4
��	o

g�2 +
1

2
�	o

r�2 . �53�

According to Eqs. �53� and �52�, �	add
g→r�2 is given by

�	add
g→r�2 =

1

8
�9�	o

r�2 + 2�	o
g�2 + 4	2r1�2�	o

g�2 + �	o
r�2�1/2� .

�54a�

The derivation of the equation that describes �	add
g→b�2 is

similar:

�	add
g→b�2 =

1

8
�9�	o

b�2 + 2�	o
g�2 + 4	2r2�2�	o

g�2 + �	o
b�2�1/2� ,

�54b�

where r2 is the correlation coefficient between blue values
and the KB domain. We can now estimate the noise propa-
gation equation for the green channel. As described in Ap-
pendices C and D, n�=4p, v=2p, n=w= p, and p is very
large. Equation �51� becomes

�	demos
g �2 =

1

32
�9�	o

r�2 + 20�	o
g�2 + 9�	o

b�2 + 4	2r1	o
r�2�	o

g�2

+ �	o
r�2�1/2 + 4	2r2	o

b�2�	o
g�2 + �	o

b�2�1/2� . �55�

If all values are uncorrelated �r1=r2=0�, the preceding
equation is simplified:

�	demos
g �2 =

1

32
�9�	o

r�2 + 20�	o
g�2 + 9�	o

b�2� . �56�

To estimate the variances for the demosaicked red and
blue channels more statistical correlations between the par-
ticipating values must be considered. For the red/blue chan-
nel we must consider whether interpolation is performed on
a green or a blue/red pixel. In the case of estimating the
variance of a red value at a blue pixel, we used the previ-
ously estimated variance �	add

g→b�2 of the interpolated green
values. We also incorporated �	add

g→r�2 in our calculations,
since computation of KR values at red neighboring pixels
requires the usage of the interpolated green values at these
positions. Because of the presence of �	add

g→r�2 and �	add
g→b�2

terms, the r1 and r2 coefficients were also incorporated. A
coefficient r1� is included to describe the correlation be-
tween the original green pixels and the KR domain. Another
coefficient, r2�, is included to describe the correlation be-
tween the interpolated green pixels and the KR domain. To
fully describe noise propagation for the red channel, we
added one last coefficient to compensate for the correlation
between the interpolated green and the red pixels, when
estimating the G−R domain. The derivation of variance for
any chrominance channel x �c is the remaining chromi-
nance channel�, is similar to Eq. �55�:

�	demos
x �2 =

1

16
�9�	o

x�2 + 8�	o
g�2 + 5�	add

g→x�2 + 4�	add
g→c�2

− �8	2r1�	o
g + 4r2�	add

g→c���	add
g→x�2 − 2r3	add

g→x	o
x

+ �	x�2�1/2 − 10r3	g→y	x� , �57�
o add o
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where �	add
g→r�2 and �	add

g→b�2 are estimated using Eq. �54�. If
all participating values are uncorrelated �r1=r2=r1�=r2�=r3

=0� the preceding equation can be simplified:

�	demos
x �2 =

1

128
�117�	o

x�2 + 80�	o
g�2 + 36�	o

c�2� . �58�

References
1. J. C. Trijonis, W. C. Malm, M. Pitchford, W. H. White, R. Charison,

and R. Husar, “Visibility: existing and historical conditions—causes
and effects,” NAPAP Report 24, III, pp. 24/31 �Oct. 1990�; available
using http://vista.cira.colostate.edu/improve/Publications/
publications.htm.

2. EPA, “Air quality criteria for particulate matter,” II, EPA 600/P-95/
001bF, pp. 8/1, 8/4, 8/79, 8/123–8/125 �Apr. 1996�.

3. J. V. Molenar, W. C. Malm, and C. E. Johnson, “Visual air quality
simulation techniques,” Atmos. Environ. 28�5�, 1055–1063 �1994�.

4. A. Eldering, S. M. Larson, J. R. Hall, K. J. Hussay, and G. R. Class,
“Development of an improved image processing based visibility
model,” Environ. Sci. Technol. 27�4�, 626–635 �1993�.

5. S. M. Larson and G. R. Cass, “Verification of image processing based
visibility models,” Environ. Sci. Technol. 22�6�, 629–637 �1988�.

6. J. Hernándes-Andrés, R. L. Lee, Jr., and J. Romero, Jr., “Color and
luminance asymmetries in the clear sky,” Appl. Opt. 42�3�, 458–464
�2003�.

7. J. L. Gardner, “Uncertainty estimation in colour measurement,”
Color Res. Appl. 25, 349–355 �Oct. 2000�.

8. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image
capture: simulation of sensor responses from hyperspectral images,”
IEEE Trans. Image Process. 10�2�, 307–315 �2001�.

9. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color
cameras-1—response models,” Technical Report HPL-97-53,
Hewlett-Packard Co. �Mar. 1997�.

10. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Digital color
cameras-2—spectral response,” Technical Report HPL-97-54,
Hewlett-Packard Co. �Mar. 1997�.

11. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Linear
models for digital cameras,” in Proc. IS&T 50th Annu. Conf., pp.
377–382 �1997�.

12. C. Kolb, D. Mitchell, and P. Hanrahan, “A realistic camera model for
computer graphics,” in Proc. ACM SIGGRAPH, pp. 317–324 �1995�.

13. H. B. Wach and E. R. Dowski, Jr., “Noise modeling for design and
simulation of color imaging systems, ” in Proc. IS&T 12th Color
Imaging Conf., pp. 211–216 �2004�.

14. T. Chen, “Digital camera system simulator and applications,” PhD
Thesis, Stanford University �2003�.

15. J. E. Farrell, F. Xiao, P. B. Cartysse, and B. A. Wandell, “A simula-
tion tool for evaluating digital camera image quality,” Proc. SPIE
5294, 124–131 �2004�.

16. R. Lukac, K. N. Plataniotis, D. Hatzinakos, and M. Aleksic, “A novel
cost effective demosaicing approach,” IEEE Trans. Consum. Elec-
tron. 50�1�, 256–261 �2004�.

17. R. Lukac and K. N. Plataniotis, “Normalized color-ratio modelling
for CFA interpolation,” IEEE Trans. Consum. Electron. 50�2�, 737–
745 �2004�.

18. B. Gunturk, Y. Altunbasak, and R. Mersereau, “Color plane interpo-
lation using alternating projections,” IEEE Trans. Image Process.
11�9�, 997–1013 �2002�.

19. G. D. Finlayson and M. S. Drew, “Constrained least-squares regres-
sion in color spaces,” J. Electron. Imaging 6�4�, 484–493 �1997�.

20. B. E. Bayer, “Color imaging array,” U.S. Patent No. 3,971,065 �Mar.
1976�.

21. D. Litwiller, “CCD vs. CMOS: facts and fiction,” Photonics Spectra,
pp. 154–158 �Jan. 2001�.

22. Eastman Kodak Co., “Conversion of light to electronic charge,” CCD
Primer, MTD/PS-0217 �May 2001�; available using http://
www.kodak.com/global/en/digital/ccd/.

23. R. E. Jacobson, S. F. Ray, and G. G. Attridge, The Manual of Pho-
tography, 8th ed., pp. 32, 50–52, Focal Press, London and Boston
�1988�.

24. Eastman Kodak Co., “KAF-5101CE image sensor. Device perfor-
mance specification” �June 2003�; available using http://
www.kodak.com/global/en/digital/ccd/.

25. Eastman Kodak Co., “CCD image sensor noise sources,” Application
Note, MTD/PS-0233 �Aug. 2001� �online�; available: http://
www.kodak.com/global/en/digital/ccd/.

26. R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. Sander, “Demosa-
icking methods for Bayer color arrays,” J. Electron. Imaging 11�3�,
306–315 �2002�.

27. T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpola-

tion for digital still cameras suitable for a 32-bit MCU,” IEEE Trans.

Oct–Dec 2005/Vol. 14(4)9



Haralabidis and Pilinis: Linear color camera model for a skylight colorimeter…
Consum. Electron. 44�4�, 1342–1352 �1998�.
28. D. R. Cok, “Signal processing method and apparatus for producing

interpolated chrominance values in a sampled color image signal,”
U.S. Patent No. 4,642,678 �1987�.

29. S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color
filter arrays using signal correlation,” IEEE Trans. Circuits Syst.
Video Technol. 13�6�, 503–513 �2003�.

30. R. Kimmel, “Demosaicing: image reconstruction from color CCD
samples,” IEEE Trans. Image Process. 8�9�, 1221–1228 �1999�.

31. W. Lu and Y. P. Tang, “Color filter array demosaicing: new method
and performance measures,” IEEE Trans. Image Process. 12�10�,
1194–1210 �2003�.

32. R. Lukac, B. Smolka, K. Martin, K. N. Plataniotis, and A. N. Venet-
sanopulos, “Vector filtering for color imaging,” IEEE Signal Process.
Mag. 22�1�, 74–86 �2005�.

33. W. K. Pratt, Digital Image Processing, 2nd ed., p. 74, Wiley, New
York �1991�.

34. G. Sharma, Digital Color Imaging, pp. 30–38, 81, 291, 294, CRC
Press, Boca Raton, FL �2003�.

35. G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans.
Image Process. 6�7�, 901–932 �1997�.

36. R. Philbrick, H. Erchardt, and H. Titus, “The efficiency of linear solid
state imagers for film scanning applications,” in Proc. Mapping and
Remote Sensing Tools for the 21st Century, pp. 15–24, American
Society for Photogrammetry and Remote Sensing �1994�.

37. W. Wu and J. P. Allebach, “Imaging colorimetry using a digital cam-
era,” J. Imaging Sci. Technol. 44�4�, 267–279 �2000�.

38. J. Teuber, Digital Image Processing, p. 26, Prentice Hall, UK �1993�.
39. G. M. P. Centen, “CCD imaging: concepts for low noise and high

bandwidth,” Proefschrift, Technische Universiteit Eindhoven, pp. 7,
11, 21 �1999�.

40. J. L. Gach, D. Darson, C. Guillaume, C. Goillandeau, O. Boissin, J.
Boulesteix, and C. Cavadore, “Zero noise CCD: a new readout tech-
nique for extremely low light level observations,” in Scientific Driv-
ers for ESO Future VLT/VLTI Instrumentation, pp. 247–250,
Springer, Berlin �2002�.

41. G. C. Holst, CCD Arrays, Cameras, and Displays, 2nd ed., JCD
Publishing and SPIE Optical Engineering Press, Bellingham, WA
�1998�.

42. J. K. Taylor, Statistical Techniques for Data Analysis, Lewis Publish-
ers Inc. �1990�.

43. R. Lukac, K. N. Martin, and K. N. Plataniotis, “Digital camera zoom-
ing based on unified CFA image processing steps,” IEEE Trans. Con-
sum. Electron. 50�1�, 15–24 �2004�.

44. R. Lukac, K. Martin, and K. N. Plataniotis, “Demosaicked image
postprocessing using local color ratios,” IEEE Trans. Circuits Syst.
Video Technol. 14�6�, 914–920 �2004�.

45. S. K. Naik and C. A. Murthy, “Hue-preserving color image enhance-
ment without gamut problem,” IEEE Trans. Image Process. 12�12�,
Journal of Electronic Imaging 043005-2
1591–1598 �2003�.
46. C. K. Dogras, M. P. Ioannidou, and D. P. Chrissoulidis, “Analytical

study of the changes in the color of daylight due to sulfate droplets
and soot grains in the atmosphere,” J. Quant. Spectrosc. Radiat.
Transf. 84, 223–238 �Mar. 2004�.

47. J. Sloup, “A survey of the modelling and rendering of the earth’s
atmosphere,” in Proc. of the 18th Spring Conf. on Computer Graph-
ics, A. Chalmers, Ed., pp. 141–150, ACM Press, NY �2002�.

48. R. V. Klassen, “Modeling the effect of atmosphere on light,” ACM
Trans. Graphics 6�3�, 215–237 �1987�.

49. X. F. Kneizys, P. E. Shettle, W. L. Abreu, H. J. Chetwynd, P. G.
Anderson, O. W. Gallery, A. E. J. Selby, and A. S. Clough, Users
Guide to LOWTRAN 7, USA Air Force Geophysics Lab., AFGL-TR-
88-0177, Env. Res. Papers, no. 1010 �Aug. 1988�.

50. J. Hernándes-Andrés and J. Romero, Jr., “Colorimetric and spectro-
metric characteristics of narrow-field-of-view clear skylight in
Granada, Spain,” J. Opt. Soc. Am. A 18�2�, 412–420 �2001�.

51. P. D. Burns and R. S. Berns, “Error propagation analysis in color
measurement and imaging,” Color Res. Appl. 22�4�, 280–289 �1997�.

52. B. A. Wandell and J. E. Farrel, “Water into wine: converting scanner
RGB to tristimulus XYZ,” Proc. SPIE 1909, 92–100 �1993�.

Panagiotis E. Haralabidis is a PhD candi-
date with the Department of Environment
of the University of the Aegean. He re-
ceived his BSc degree in physics and non-
linear dynamics of electric circuits from the
University of Salonica, Greece. His re-
search interests include atmospheric phys-
ics and aerosols, algorithms for digital
color, and system simulation.

Christodoulos Pilinis received his di-
ploma in chemical engineering from the
National Technical University of Athens,
Greece, in 1983, his MS degree in environ-
mental engineering from Caltech, Califor-
nia, in 1984, and his PhD degree in envi-
ronmental engineering and applied
mathematics from Caltech, California, in
1988. He is an associate professor with the
Department of Environment of the Univer-
sity of the Aegean, Mytilene, Greece.
Oct–Dec 2005/Vol. 14(4)0


