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Abstract 

Fine and ultrafine particles in the atmosphere are of interest because of their effects on 

the earth‘s radiation budget, visibility impairment, and human health. These effects 

depend on particle size, morphology, and composition. Various instruments and 

techniques have been developed for size distribution measurements. The most 

efficient way of measuring the size distribution of ultrafine particles is by determing 

their electrical mobility. The most widely used arrangement of doing that is a 

Differential Mobility Analyzer (DMA). Conventional DMAs for classification of 

aerosol particles have one polydisperse-particle inlet and one monodisperse-particle 

outlet. As a result, when they are used as particle classifiers in aerosol-mobility 

spectrometers it is required to scan through different operating conditions, thereby 

requiring a significant amount of time (i.e., of the order of a minute) for a single 

mobility distribution measurement. DMAs with multiple outlets can significantly 

reduce this scanning time since particles of different mobility can be classified and 

detected simultaneously. In addition, depending on the relative location of the first 

and the last outlet from the inlet, one can increase the dynamic mobility range of the 

selected particles in a single particle mobility distribution measurement. Overlap of 

particle mobilities selected by the different exits can also provide valuable 

information for improving the inversion of the measured signal to particle size 

distributions. Tandem DMA systems are also used for probing size-changing 

properties of aerosol particles that can define their effects on climate and human 

health (e.g., water adsorption and condensation on the particles). Inversion techniques 

are needed for retrieving the both size distribution (using a single DMA in mobility 

spectrometers) and the size-changing properties (using Tandem DMA systems, 

TDMA) of the sampled aerosol. The proposed project will yield a novel DMA 

system, which will be used as classifier in mobility spectrometers and TDMA 

systems. 
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CHAPTER 1. INTRODUCTION  

Fine and ultrafine particles in the atmosphere are of interest because of their effects on 

the earth‘s radiation budget (IPCC, 2007), visibility impairment (NRC, 1993), and human 

health (e.g. Oberdörster, 2000; Peters et al., 1997). These effects depend on particle size, 

morphology, and chemical composition. Depending on the size range of the sample 

particles, a range of methods can be employed to measure the size distribution of the 

particles. Different measurement methods provide different measures of particle size. 

Thus, for example, typical atmospheric particles of the equivalent size (e.g., equivalent 

volume diameter) can have different optical diameter (Covert et al. 1990; Dick and 

McMurry 2007; Dockery and Pope 1994; Heintzenberg et al. 2002; Heintzenberg et al. 

2004; Hering and McMurry 1991; Naoe and Okada 2001; Okada and Heintzenberg 2003), 

masses (Geller et al. 2006; McMurry et al. 2002), and aerodynamic diameter (DeCarlo et 

al. 2005; McMurry et al. 2002), indicating that they are chemically and/or morphologically 

different. Recent studies on tandem measurements of multiple particle properties have 

begun to provide information for the relationships between the particle chemical and 

physical properties. This research focuses on tandem measurements for which particles are 

first classified based on their electrical mobility with Differential Mobility Analyzers 

(DMAs) (Hewitt, 1957; Liu and Pui, 1974; Knutson and Whitby, 1975; Chen et al., 1998) 

The DMA (Hewitt, 1957) has been widely applied in a variety of aerosol measurement 

applications including the generation of monodisperse aerosol standards for instrument 

calibration (Liu and Pui, 1974) and the measurement of submicron aerosol size 

distributions (Knutson, 1976; Hoppel, 1978; Fissan et al., 1982; Plomp et al., 1982; 

Scheibel et al., 1983; Kousaka et al., 1985). The use of two DMAs in series, referred to as 

a tandem differential mobility analyzer (TDMA) system, has, also, been reported. Liu et al. 

(1978) used the TDMA to examine the deliquescent and hygroscopic properties of 

monodisperse aerosols, and McMurry et al. (1983) measure the reaction rate between 

ammonia gas and sulfuric acid aerosol droplets using a TDMA. The most widespread 

application is TDMA is that of the hygroscopicity (H-TDMA), where the dry selected 

particles are exposed to a well-defined relative humidity (RH) conditions, in order to 

measure hygroscopic growth of the particles (e.g. Gysel et al., 2002; Rader and McMurry, 

1986; Swietlicki et al., 2008). Rader et al. (1986b) also used the TDMA to measure 

evaporation rates of several organic aerosol materials. Joutsensaari et al. (2001) have 

developed an organic O-TDMA in order to determine the affinity of particles to different 
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organic species by exposing them to, e.g., subsaturated ethanol vapours. Moreover, 

evaporation rates of volatile particles at ambient temperature have been determined by 

employing laminar flow cells between the two DMAs (e.g., Bilde & Pandis, 2001; Dassios 

& Pandis, 1999). The volatility V-TDMA technique is used to measure the amount of 

refractory material in aerosol particles (e.g. Paulsenet et al., 2006; Philippin et al., 2004), 

while a combined volatilization humidification, VH-TDMA, system has been used to 

investigate the contributions of different constituents in mixed particles to the hygroscopic 

water uptake (e.g., Johnson et al., 2004). Figure 1.1 illustrates an overview of the concept 

behind the tandem measurements.  

Particles separated based on their electrical mobility in mobility spectrometers have to 

be further analyzed to obtain the size distribution of the particles. In an ideal situation, one-

to-one correspondence between the channels and size classes, i.e. particles in a certain size 

range would be collected entirely in a particular channel, with particles in a neighboring 

size range being collected in a neighboring channel, with no overlap whatsoever, is the 

desired outcome. However, no aerosol spectrometer behaves in this idealized manner. 

Typically, a particular channel will collect particles from multiple size ranges due to 

particle diffusivity within the DMA and the number of charges they carry. Thus, a degree 

of indeterminacy is introduced into the interpretation of the measurements, so that a 

continuous size distribution now has to be estimated from a set of discrete measurements, 

each of which is influenced by all values of the unknown distribution, i.e. ―the set of 

numbers which comprises the answer must be ‗unraveled‘, as it were, from a tangled set of 

combinations of these numbers‖, (Twomey, 1977). 

The main goal of this study is to provide the necessary tools for interpreting size 

distribution measurements from electrical mobility spectrometers and TDMA systems. To 

achieve that I will develop the mathematical framework for describing the performance of 

the DMA and extend it for a novel design. More specifically I will design and model the 

performance of a Multiple Monodisperse Outlet DMA (MMO-DMA), and design a DMA 

with two monodisperse outlets (i.e., the Dual-MO-DMA). After that I will develop the 

necessary data inversion algorithms for both the Scanning Mobility Particle Spectrometer 

(SMPS) and the TDMA that will include a Dual-MO-DMA and use it for field and 

laboratory measurements.  

The following sections provide a brief review of the phenomena and processes involved 

in differential mobility analysis, the state of art in DMA instrumentation and describe a 
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number of inversion techniques that grapple with this problem in different ways and with 

differing levels of success.  

 

Figure 1. 1 Schematic of aerosol tandem measurements. Particles of a given mobility diameter are selected by a 

DMA (or TDMA so as to process the aerosol prior the additional measurements) from the sampled aerosol. 

Additional information about the physicochemical properties is obtained from one or more additional 

measurement methods in series.  

• DMA

• TDMA

Particle Classiffication

• APM (mass, e.g. Ehara et al., 1996)

• ATOFMS, AMS (Composition, vacuum aerodynamic diameter, e.g. Gard 
et al., 1997)

• CCN (Cloud activation, e.g. Delene & Deshler,2000; Hudson, 1989; 
Roberts & Nenes, 2005)

• MALS (Angular light scattering, e.g. Dick & McMurry,2007; Dick et al., 
1998; Wyatt et al., 1988)

• Impactor (Aerodynamic Size, composition, e.g. Hering et al., 1977; 
Hering & Friedlander, 1979; Marple et al., 1991)

• OPC (Light scattering, e.g. Cooke & Kerker, 1975; Heyder & Gedhart, 
1979; Liu & Daum, 2000; Szymanski & Liu,1986)

• TEM (Morphology, e.g. Park et al., 2004a, 2004b)

Physicochemical properties
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CHAPTER 2.  LITERATURE REVIEW  

This Chapter describes the fundamental concepts and theories needed to understand the 

operation of the electrical mobility spectrometers and Tandem Differential Mobility 

Analyzer (TDMA) systems.  

The first Section of the Chapter covers some fundamental properties of particles and 

aerosols. The second Section presents a brief review of the most widely accepted theories 

that describe diffusion charging of aerosol particles. In the third Section Fundamental 

concepts of aerosol classifiers such as their transfer function and resolution are presented, 

while the fourth Section describes briefly the electrical mobility measurement method used 

to detect particles in such instruments. The last Section gives a definition of the 

instrument's kernel and introduces the problem of data inversion for aerosol analyzers, viz., 

the techniques used to translate the electrical mobility measurements to aerosol size 

distributions. 

2.1 Aerosol Particle Properties – Size and Size Depended Properties 

The term aerosol is used by definition to refer to an assembly of liquid or solid particles 

suspended in a gaseous medium in the size range of 1 nm to 100 μm (Baron and Willeke, 

2001). Particles either manufactured or naturally produced have a great diversity in size, 

morphology, chemical composition. Even if the particles under examination have the same 

microscopically observed diameter, the mass, the surface, the chemical composition and 

other properties may differ markedly. A variety of techniques is available for obtaining 

useful information about particles, such as their size which is the most important parameter 

describing aerosol behavior.  

A commonly used term is that of the equivalent diameter, i.e. the diameter of a sphere 

having the same value of a specific physical property as the irregularly shaped particle 

being measured (Fig. 2.1).  Thus, the mobility equivalent diameter,   , is defined as the 

diameter of a sphere with the same mobility as the particle in question, while the 

aerodynamic equivalent diameter,   , is the diameter of a standard-density sphere having 

the same gravitational settling velocity as the particle being measured (Baron and Willeke, 

2001). For particles with complex shape such as an agglomerate, a significant part of the 

internal volume is made of voids, in such particles are defined the mass equivalent 

diameter, for which the particle is compressed into a spherical particle without voids and 

the envelope equivalent diameter, for which the particle voids are included in the sphere. 
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When observing a particle‘s shape with a microscope and calculating the diameter of a 

circle that has the same area we can derive the projected area equivalent diameter is. For 

particles of submicrometer size we can also define a diffusion equivalent diameter, i.e. the 

diameter of a standard-density spherical particle with the same rate of diffusion as the 

particle measured. In a similar manner, one can define the electrical mobility equivalent 

diameter of a charged particle moving in an electric field (Baron and Willeke, 2001). The 

aerodynamic diameter is used for particles in the inertial size range, i.e. larger than 0.5 μm, 

while for particles smaller than 0.5 μm undergoing diffusion, the diffusion diameter is used 

(Walter, 2001).  

 

 

Figure 2. 1 Particle size definitions that depend on observations of particles or behavior 

Aerosols almost never consists of particles having the same size. Such an aerosol would 

be said to be monodisperse. The most highly monodisperse aerosols are those generated in 

a laboratory, with a spread in particle diameter of a few percent. Conventionally, a 

distribution with a spread of less than about 10% to 20% is considered monodisperse. 

Thus, aerosols with a large range in size are defined as polydisperse.  

Both monodisperse and polydisperse aerosols consist of particles with sizes distributed 

over a certain range. A histogram would be the simplest size distribution of the number of 
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particles in successive size intervals. If the intervals become sufficiently fine, the 

distribution would become a differential size distribution. The dependent variant is the 

number of particles,      , in the size interval from    to    , thus, is called a number 

distribution defined as            , where    is the particle diameter. As the particle 

diameter typically ranges over several orders of magnitude, is useful to use       for the 

size interval, thus the size distribution becomes              . It has been found that 

aerosol size distributions from many different sources follow the lognormal distribution 

given by:    
 

        
    

             
 

       
       , where N is the total number of 

particles, is the count median diameter (CMD) by number – which is equal to the 

geometric mean diameter,   , for a lognormal distribution – and    is the geometric 

standard deviation, given by:       
            

 
  

 
 

   
 

   

. 

Apart from the widely used lognormal function for particle size distributions, the 

modified gamma distribution has been also used for atmospheric aerosols (Pruppacher and 

Klett, 1980). According to Brown and Wohletz (1995) the Weibull distribution fits 

fragmentation aerosols somewhat better than the lognormal distribution. Similar to the 

Weibull distribution is the Rosin-Rammler (1933) distribution.  

Size range of the aerosol is one of the factors to consider in the selection of 

instrumentation for aerosol measurements. There is a continual effort from aerosol 

measurement researchers to build aerosol instruments that measure one or more aerosol 

properties over a wider size range. Another factor to take in consideration is the in-situ or 

ex-situ measurement. There are two approaches, namely the collection and analysis 

approach or direct-reading sensors. Figure 2.2 shows an overview of the size range of 

several types of commonly used classes of instruments. 

Other important properties of aerosol particles that are of high relevance to atmospheric 

aerosols, are the hygroscopicity (i.e., the ability of the particles to adsorb and condense 

water vapor), and the volatility of aerosol particles. These properties can give an indirect 

indication of the composition of the particles. Atmospheric aerosols are typically 

hygroscopic and can condense water at subsaturated conditions. Hygroscopic growth of the 

particles at intermediate relative humidity (RH) conditions can influence the light 

scattering by the particles, their potential to act as cloud condensation nuclei, and their 
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chemical reactivity. The RH dependence of light scattering is one of the parameters needed 

to estimate the direct climate forcing by aerosol particles. Because of that the dry aerosol 

particle size distribution and the size-dependent water uptake at different RH conditions 

must be known to model the humidity dependence of the light scattering of an aerosol. 

Efforts are currently undertaken to include the effects of hygroscopic growth of aerosol 

particles in global climate models in order to better predict their scattering properties and 

size under varying humidity conditions (Randall et al., 2007). The two most widely used 

techniques enabling measurement of the change in the amount of water absorbed to an 

aerosols particle with varying RH are the single aerosol particle levitation technique using 

an electrodynamic balance (EDB; Tang and Munkelwitz, 1993) and the hygroscopicity 

tandem differential mobility analyser technique (HTDMA; Liu et al., 1978; Rader and 

McMurry, 1986; Swietlicki et al., 2008). The EDB technique, which measures the 

properties of individual super-micrometer aerosol particles, is suitable for laboratory 

measurements. The HTDMA technique, which probes the hygroscopicity of all aerosol 

particles of a well-defined dry diameter at once, is suitable for field and laboratory 

measurements. HTDMA instruments cover the sub-micrometer diameter range, which 

includes the majority of the atmospheric aerosol particles. 
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Figure 2. 2 Measurement size range of some principal aerosol sizing and analytical instruments. 

(Adapted from Pui, 1996.) 

2.2 Electrical Mobility Measurements 

2.2.1 Diffusion Charging of Particles  

Aerosol particles are readily charged during generation by a variety of charge emission 

mechanisms or by the attachment of gas ions. The principal method for sizing ultrafine 

particles is based on knowing the charge distribution of the charged particles and 

determining the electrostatic force that can be applied to such particles in electrical 

mobility analyzers.  

Large particles frequently acquire multiple charges, but as the probability of charging 

decreases with decreasing particle size, sufficiently small particles will carry only one 

elementary unit of charge so that the charge on that particle is q = ±e. If a charged particle 

is placed in an electric field of known strength, it will migrate with a velocity that depends 

only on the particle size and structure, allowing the determination of the particle size. 

Besides the fact that such particles have relatively high diffusivities, measuring their size 
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with high resolution is possible as the forces imparted on them can be sufficiently large to 

overwhelm diffusional effects. 

The distribution of charges on particles with respect to size and among particles of a 

given size must be known to accurately determine the particle size distribution by 

measuring their electrical mobility. Typically, few ultrafine particles acquire a charge, so 

the particles with a given velocity will account for only a small fraction of the total 

particles of a given size. Because of the increasing probability of a particle acquiring 

multiple charges with increasing size, the migration velocities of large particles can vary 

from particle to particle, so migration-based particle size analysis is generally limited to 

particles smaller than about 1 μm in diameter. Even at that size, the finite probability of 

multiple charging complicates data analysis. 

2.2.1.1 Behavior of Charged Particles 

When a particle with charge   moves in an electric field of strength E, it experiences a 

force       . Because of the low ion densities and slow charge transfer kinetics in 

ambient temperature gases, aerosol particles usually carry only a small number of 

elementary charges. Thus, the charge is represented as q = ne, where                   

Coulomb is the elementary unit of charge and n is the number of charges that a particle 

carries. For migration times that are long compared to the aerodynamic relaxation time, 

         a charged particle will migrate at a steady-state migration velocity relative to 

the gas motion of        , where B and    are the mechanical and electrical mobilities 

of the particle, respectively. The electrical mobility of spherical particles with diameter    

in the Stokes regime, is given by the equation    
        

     
 , where   is the gas viscosity, 

   is the Cunningham slip correction factor that accounts for noncontinuum effects when 

the particle size becomes comparable with or smaller than the mean free path of the gas 

molecules,  , or in dimensionless terms, when the Knudsen number, i.e.    
  

  
, becomes 

large. The slip correction factor is given by                 
 

  
  , where the 

empirically determined coefficients are                              (Allen and 

Raabe, 1985). 

Figure 2.3 shows the variation of the electrical mobility with particle size under normal 

ambient atmospheric conditions for particles carrying different numbers of elementary 
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number of charge. Because of the dependence of the mobility on particle size,      
  

, 

the range of electric field strengths required to classify particles throughout the submicron 

size range exceeds the capabilities of a single instrument operating at fixed flow rates 

(Flagan, 2001).  

In general, mobility sizing techniques are applied to small particle migrating in an 

electric field. Consider particles (Fig 2.4) that migrate a distance b under the action of an 

applied electric field, E, produced by applying a voltage difference V over the distance b. 

The time required to migrate that distance is     
 

   
. The particle diffusivity is related to 

the mobility by the Einstein relation        , where k is the Boltzmann constant and T 

is the temperature. The ratio of the migration distance to the root mean square 

displacement due to Brownian diffusion during particle migration, i.e.              ,  is 

given by the equation 
 

         
   

   
 . For large voltages, migration will dominate, while 

for small applied voltages diffusion will distort the response of any mobility-based particle 

measurement. The voltage that is required for a given measurement depends on the desired 

mobility or size resolution. Electrostatic breakdown within the apparatus limits the 

maximum operating voltage and, therefore, the highest attainable resolution (Flagan, 

2001). 
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Figure 2. 3 Variation of mobility with size for particles with different charge. 

 

 
Figure 2. 4 Diagram of a simple electrical mobility analyzer (adopted from Hinds, 1999) 

2.2.1.2 Unipolar and Bipolar Diffusion Charging  

Accurate determination of the size of the particle from measurements of the electrical 

mobility presupposes knowledge of the number of charges on the classified particle, while 

measurement of the size distribution also requires that the fraction of particles of a given 

size that carry a given number of charges be accurately known. Hence, the production of 

aerosol particles with a known charge distribution is critical for electrical mobility 

measurements. 
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The charge distribution of sampled aerosol particles cannot be accurately known. For 

this reason the aerosol must be conditioned to a known charge state. The diffusion charge 

is unipolar or bipolar depending on the polarity of the ions in the gas, i.e. only positive or 

negative ion, or both kinds, respectively (Other mechanisms of charging aerosol particles 

are discussed in Hinds (1999) § 15.4 and Flagan (2001)). As the equilibrium charge 

distributions can be determined from well-established thermodynamic considerations, they 

are preferred. The process of charge transfer between the aerosol and an electrically neutral 

cloud of positive and negative ions is called bipolar diffusion charging. Aerosols that have 

undergone bipolar diffusion charging consist of positively and negatively charged 

particles. Even though, a well-characterized charge distribution is produced, at the small 

end of the electrical mobility sizing range only a tiny fraction of particles acquire any 

change.   

After long exposure of the particles to bipolar ion mixtures, frequent ion-particle 

collisions will bring the particles to a state of charge equilibrium. Then the fraction of 

particles of diameter    that carry n charges is described by the Boltzmann charge 

distribution (Flagan, 2001), i.e.,     
     

  

    

      
  

    
 
    

 . Boltzmann's law is commonly 

used to predict the charge distribution on the particles (Gunn (1955); Takahashi (1971); 

Liu & Pui (1974a;b). After exposure to a bipolar ion mixture, the aerosol charge 

distributions asymptotically approaches a steady state, which although similar to 

Boltzmann charge distribution, is generally asymmetrical due to differences in the 

properties of positive and negative ions. When the concentrations of positive and negative 

ions differ markedly, this asymmetry increases. The fact that in common bipolar gases 

mobility of negative ions is higher compared to that of positive ions (cf. Zeleny (1929); 

Mohnen (1977)) results in a slightly asymmetric particle charge distribution as indicated by 

many researchers (Fuchs & Lissowski (1956); Clement & Harrison (1991)). The extreme 

limit of unipolar charging occurs when the aerosol is exposed only to ions of one polarity. 

In unipolar diffusion charging the number of charges increases with time while the 

charging rate reduces since fewer ions have sufficient thermal energy to overcome the 

repulsive force and collide with the particle. The methods usually used to charge aerosol 

particles for mobility analysis corona discharge (White, 1951), radioactive decay (Liu and 

Pui, 1974b), photoelectron emission (Schmidt-Ott et al., 1980), and droplet formation in 

the presence of an electric field. 
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A gas usually contains a few free electrons and a comparable number of positive ions. 

At sufficiently high electric fields, the free electrons can be accelerated to sufficiently high 

velocities that their collisions with gas molecules lead to the ejection of additional 

electrons. A cascade of such events, called an electron avalanche, creates the corona and 

generates large numbers of positive ions and free electrons in the gas. The corona may be 

either positive or negative, which is generally more stable. The positive corona does not 

require an electron-absorbing gas and is frequently used to charge aerosol particles for 

measurement and has also been used in numerous electrostatic precipitators and the 

original electrical aerosol analyzer charger (Figure 2.5). In that charger, the corona is 

operated with a potential between a central wire and a coaxial screen. The aerosol passes 

between that screen, which is maintained at a small positive voltage and a coaxial electrode 

so that charging takes place in a region of weak electric field and charged particle losses 

due to migration to the wall are minimized. Hewitt (1957) introduced an alternating 

potential in the outer region to reverse the migration of charged particles and further reduce 

their deposition, an approach employed, again, recently, in efforts to improve the 

efficiency of unipolar charging of particles in the low nanometer size range (Buscher et al., 

1994).  

Commonly aerosol neutralizers employed in mobility spectrometers use radioactive 

bipolar diffusion chargers. In a typical aerosol device, the gas flows through a chamber that 

contains a small radioactive source, such as that shown in Figure 2.6, when the aerosol is 

passed near this source the air is ionized and the aerosol particles become charged. A 

number of different isotopes have been used in aerosol neutralizers and chargers.  

The earliest theoretical description of this charging (Lissowski, 1940) indicated that the 

charge distribution would eventually equilibrate so as to obey Boltzmann's law given by: 

                                       (1) 

where         is the fraction of particles with diameter    carrying   elementary 

charges,   
    

   ,    is the Boltzmann‘s constant and   is the absolute temperature,   the 

charge of electron. Liu and Pui (1974c) and Kojima (1978) have experimentally verified 

Eq. 1 for particle sizes from 0.02 to 1.0 μm diameter for radioactive chargers of the same 

type and strength as in the TSI instrument. Experiments by Pollak and Metnieks (1962) 

and by Kojima (1978) for particles below 0.02 μm, indicate that Εq. 1 underestimates the 

number of charged particles. For this size range the following theoretical expression by 
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Knutson (1976), as an approximation to a more complicated expression formulated by 

Gentry (1972) provides a better fit to available data   

        

 

          
               

                                             

      (2) 

where    is in micrometers.  

 

Figure 2. 5 Unipolar diffusion charger used in the TSI electrical aerosol analyzer 

 

 

Figure 2. 6  Bipolar diffusion charger based on a sealed 
85

Kr β-particle source 

 

2.2.2 Differential Mobility Analysis (DMA) 

A DMA (Fig. 2.6) consists of a grounded outer cylinder and a concentric inner rod with 

a negative electrical potential. Two streams of air are introduced into the annulus region. 
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The smaller flow is the aerosol flow,   , is introduced from the outer cylinder. The sheath 

air flow,    , consists of filtered air, and serves to carry the particles downstream the 

aerosol inlet. These two air streams flow side by side down through the DMA. Typically 

DMAs operate with a flow ratio  
  

   
    . Near the bottom of the DMA, the sample 

aerosol flow,   , is withdraw through a slit in the inner cylinder. The second exit flow,   , 

is the main exit airflow, which passes through a separate exit and is discarded. The positive 

charged aerosol particles are deflected inward towards the inner rod. Those particles 

traversing the annulus with the mobility that the DMA is adjusted to transmit, arrive at the 

inner cylinder at the location of the slit and become incorporated into   .  

 

Figure 2. 7  Schematic diagram of a differential mobility analyzer (Adopted from Hinds, 

1999). 

2.2.2.1 Transfer Function and Resolution of DMAs 

The ability of a DMA to classify aerosol particles having mobility    
  

  
, where   

elementary charges and having diffusion coefficient D, can be described by its transfer 

function, i.e., the probability of a particle having electrical mobility   
  , that enters the 

DMA to be included in the classification aerosol outlet flow (Knutson and Whitby, 1975). 
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In the first derivation of the DMA transfer function, Knutson and Whitby demonstrated 

that for non-diffusing particles this can be obtained without knowledge of the detailed 

structure of the flow field. Indeed, when assuming the particles are non-diffusing the only 

uncertainty in mobility classification can be entirely attributed to the finite stream width of 

aerosol flow.  

In real conditions, the transfer function shape is closer to a Gaussian, with height less 

than unity and base width larger than              , as a result of particle diffusivity. 

Brownian motion of the charged particles makes the particles deviate from their 

deterministic trajectories, and as a result be included in the monodisperse particle outlet 

when they are not supposed to be included. The distorting effect of Brownian motion on 

the shape of the transfer function has been studied by a number of authors (Tammet, 1970; 

Kousaka et al., 1985, 1986; Stolzenburg, 1988; Rosell-Llompart et al., 1996; Stratmann et 

al., 1997; Hagwood et al., 1999; Salm, 2000; de la Mora, 2002). Stolzenburg (1988) 

investigated the role of particle Brownian diffusion on the shape of DMA transfer function 

using an approach similar to that used by Tammet (1970) in his analysis of ion diffusion in 

aspiration condensers, and derived an expression of the transfer function of the cylindrical 

DMA. Recently, Salm (2000); Kulkarni and Wang (2006) proposed a different approach to 

account for broadening of transfer function due to particle Brownian diffusion.  

Thus, DMAs with shorter column lengths and the ability to operate at high sheath flow 

rate are preferred for nanometer particles. The upper sizing limit a DMA can size/classify 

is determined by the maximum electrical strength achievable (i.e., the electrical breakdown 

voltage of the carrier gas). A long-column DMA is needed to extend the measurement 

range to sizes up to 1 micron. One of the tasks in particle mobility measurements is the 

estimation of the resolution. According to the DMA operation theory (Knutson and Whitby 

1975; Stolzenburg 1998) the sizing resolution of a DMA is a function of the sheath-to-

polydisperse-aerosol flow rate ratio. In a simple term, if polydisperse aerosol and 

monodisperse aerosol flow rates were kept constant, the better resolution would be 

achieved as the sheath flow rate is increased. The resolution parameter has also been 

expressed as    
 

     
  where       is the least distinguishable interval in the spectrum 

at mobility Z (Salm, 1983; Zhang and Flagan, 1996). The interval       may be 

determined by means of the width of a normalized apparent spectrum (Salm, 2000).  

Moreover, Flagan (1999) described the resolution of the DMA as the ratio of the mobility 
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at the peak of the column of the transfer function to the full width of the transfer function 

at the one half of its maximum value.  

The conditions that lead to diffusional broadening have been explained in a number of 

ways. Several reports have suggested that reducing the residence time of the particles in 

the classifier column is essential for high resolution measurements. While it is true that a 

short residence time reduces the extent of diffusion, diffusion is only important if the 

residence time is large by comparison to the characteristic time for the diffusion. Absolute 

residence time constraints do not necessarily eliminate diffusional broadening. de la Mora 

et al. (1998) at their paper have investigated ways to raise the resolution of DMAs. They 

concluded that the peak broadening may be reduced by two different means: the purely 

geometrical one, who involves using a DMA length comparable to its width, while the 

second approach involves augmenting the Peclét number, which may be achieved merely 

increasing the sheath flow rate.  

Substantial progress has been made in improving the resolution of conventional 

instruments at the large particle end of the size spectrum. Through detailed numerical 

descriptions of the flow in the TSI long DMA, Chen and Pui (1997) have shown that a 

small classification voltage offset that has frequently been observed in tandem differential 

mobility measurements results from a recirculating flow within the entrance slot of the 

DMA. Refinements to the inlet slot design have eliminated this deviation and produced 

DMAs that are capable of operating with near-theoretical resolution at higher limiting 

resolutions that previously achieved (Chen et al., 1999; Eichler et al., 1998).On the other 

hand, the resolution of the Radial DMA (RDMA) was found to be somewhat lower than 

expected for large particles, but the high transmission efficiency for ultrafine aerosol 

particles has made it an extremely useful instrument for measurement of fine particle size 

distributions in clean atmosphere (Zhang et al., 1995).  

2.2.3 Review of Aerosol Analyzers 

2.2.3.1 DMAs 

Differential mobility analyzers (DMAs) are widely used in aerosol research as a tool for 

sizing and for producing monodisperse airborne particles having diameters in the 

submicron and nanometer range (cf. Flagan, 1998; McMurry, 2000). In view of improving 

several aspects of their performance (e.g., particle size range, resolution etc.), several 
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DMA designs have been proposed over the last decades (Liu and Pui, 1974; Knutson and 

Whitby, 1975; Pourprix and Daval, 1990;  Pourprix, 1994; Zhang et al., 1995; Zhang and 

Flagan, 1996; Fissan et al., 1996; Brunelli et al., 2009; Santos et al., 2009). The most 

popular DMA design employs two coaxial cylindrical electrodes between which an annular 

flow carries the sample particles in a sheath particle-free flow (Whitby and Clark, 1966; 

Liu and Pui, 1974; Knutson and Whitby, 1975). Applying a potential difference between 

the two cylindrical electrodes, the charged particles migrate from one electrode to the other 

so that only particles having mobilities within a very narrow range can exit through the 

monodisperse exit. The DMA can be used except for the production of a monodisperse 

aerosol, for studying changes in aerosol particles due to condensation, evaporation, or 

other processes that will change the particle size or structure (McMurry, 2000). 

Conventional DMAs employ one monodisperse-particle outlet. As a result, particles 

having mobilities only within a specific narrow range can be classified for each 

combination of operating conditions (i.e., flows and applied voltage between the two 

electrodes). This, however, poses the limitation that when DMAs are used as particle 

classifiers in aerosol-mobility spectrometers, it is required to scan through different 

operating conditions, thereby requiring a significant amount of time (from 30 seconds and 

up to a few minutes depending on the required accuracy of the measurement) for a single 

mobility distribution measurement (Wang and Flagan, 1990; Endo et al., 1997).  

 In addition, because typically the flow field is usually kept constant and only the 

electric field is altered in order to classify particles of different mobility, the dynamic size 

range of conventional DMAs can span over one order of magnitude (McMurry, 2000). 

DMAs with multiple outlets on the other hand can significantly reduce the scanning time 

when used as classifiers in mobility spectrometers because particles of different mobility 

can be selected and detected simultaneously. Depending on the distance between the first 

and the last outlet from the inlet, one can also increase the dynamic mobility range of the 

selected particles in a single measurement. 

Another limitation of the conventional cylindrical DMA is that classification of particles 

having diameter smaller than 10 nm is limited by the diffusivity of the particles along their 

migration paths. As a result, the transfer function of the instrument in this size region is 

broadened, and the classification resolution significantly reduced (Fissan et al., 1996). To 

overcome this limitation Chen et al. (1998) proposed the use of shorter cylindrical DMA 
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columns to minimize the migration time of the particles within the instruments and thus to 

reduce the broadening of the transfer functions. To further improve the classification 

resolution of sub-10 nm particles, de la Mora and his co-workers have designed DMAs that 

operate at much higher sheath flow rates that can classify ions with sub-1 nm effective 

diameter (Rossel- Llompart et al., 1996; de Juan and de la Mora, 1998; Ramiro et al., 

2003). 

In a multi-channel electrical mobility spectrometer, one of the electrodes is equipped 

with a series of insulated metal rings, each connected to its own electrometer. When a 

certain electric field is applied between the coaxial electrodes, the charged particles of a 

given polarity are deposited differentially onto the metal rings. This arrangement allows 

for the simultaneous measurement of the number concentration of particles having 

different mobilities, thus reducing considerably the time required for the measurement of 

the entire mobility distribution. The multi-channel analyzer, which has been specially 

designed for rapidly fluctuating aerosols, was developed in the 1970‘s at the University of 

Tartu (Tammet, 1970; Tammet et al.,1998, 2002). Other electrical mobility spectrometers 

that have been proposed in the past can measure particles having diameters over a wider 

range (e.g., Winklamayr et al., 1991; Biskos et al., 2005). Two commercial versions of 

DMAs of this design are the DMS, Differential Mobility Spectrometer, (Biskos et al., 

2005) and the EEPS, Engine Exhaust Particle Sizer (TSI Model 3090). According to the 

specifications, the DMS is able to measure particles in the size range from 5 to 1000 nm 

with 26 channels, and the instrument response time is 500 ms. Similarly, the EEPS is 

capable of measuring aerosols in the size range from 5.6 to 560 nm in 22 channels, and its 

response time is 100 ms. The main disadvantage of these instruments, however, is that they 

do not have as good a size resolution as that provided by a conventional DMA.  

Another approach to widen the classification size range of a DMA is that proposed by 

Seol et al. (2002) who designed and operated an adjustable-column length DMA 

(ACDMA) and showed that the classifier can measure particles having size from 1 nm to 

hundreds of nanometers by adjusting the column length, between 0 and 300 mm, 

corresponding to the particle size. Another way to expand the size range of the classified 

particles in one voltage scan is by varying the sheath flow rate as proposed by Collins et al. 

(2000). Operating the TSI model 3071 with the sheath flow rate ramp, i.e., 30-second ramp 

from 20 to 2 lpm, and voltage scanning, the lower particle size limit was decreased from 
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9.8 to 4.8 nm and the upper limit increased from 537 to 1160 nm. Further, Takenchi et al. 

(2005) proposed a dual-DMA design to measure particle in a wide size range. In the dual-

DMA, the polydisperse aerosol flow is split into two streams, directed to two coaxially 

nested DMAs sharing the same electrically grounded cylinder. With two different sheath 

flow rates and classification lengths, the device, operated at the voltage ramp mode the 

researchers were able to separately monitor particles in the nucleation mode and 

accumulation modes of particulates emitted from diesel engines. The design essentially 

hybridizes two traditional DMA columns in one package. Additional to the two sheath 

flow controllers, two high voltage power supplies are needed in this device. Further, the 

generalization of this DMA design is limited if monodisperse particles of more than two 

different sizes were needed simultaneously. Note that the scanning time of this dual-type 

DMA is 2 min, the same as that of current SMPS. In an attempt to make a DMA that could 

scan faster through different channels, Chen et al. (2007) built and tested a classifier 

(MDMA) having three monodisperse-particle outlets. Each stage of MDMA column 

covers a fraction of the entire particle size range to be measured. The covered size fractions 

of two adjacent stages of the MDMA are designed somewhat overlapped. The arrangement 

leads to the reduction of scanning voltage range and thus the cycling time of the 

measurement. The performance of this DMA has only been determined experimentally, 

and to the best of my knowledge there is still lack of a theoretical model for predicting its 

behavior under different operating conditions.  

During the last fifteen years, a great effort has been addressed to the improvement of the 

performance of DMAs, mainly modifying the aerosol inlet geometry in order to reduce 

diffusional deposition losses (Winklmayr et al., 1991; Chen et al., 1999), and shortening 

the mean aerosol residence time by minimizing the column length (Rosell-Llompart et al., 

1996) and operating the DMA in laminar flow conditions with sheath gas flow at high 

Reynolds for classifying ions with high resolution (Rosell et al. 1996; Eichler, 1998; de 

Juan and de la Mora 1998; Ramiro et al. 2003; Martinez-Lozano and de la Mora, 2006a). 

Also, two new conceptions of analyzers have appeared, one in which an additional electric 

field parallel to the main gas flow is applied (Loscertales, 1998), and the other type of 

DMA incorporating an electrified screen which permits maintaining the electrodes 

containing the inlet and outlet slits at the same potential (Martinez-Lozano et al., 2006a,b), 

thus preventing electrophoretic losses. All the above mentioned improvements were 

implemented in concentric cylindrical DMAs. With this geometry, electrode centering is 
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critical to the performance of a DMA; even a very small misalignment of the electrodes 

can lead to a severe deterioration of the resolving power of the instrument. At the same 

time, Zhang and Wexler (2006) described a modern, miniaturized version of a 

multichannel parallel-plate DMA suitable for analyzing gas phase compounds or volatile 

particle phase compounds. In these DMAs the electrodes were rectangular planar plates.  

2.2.3.2 Tandem-DMAs 

The differential mobility analyzer (DMA) (Hewitt, 1957) has been widely applied in a 

variety of aerosol measurement applications including the generation of monodisperse 

aerosol standards for instrument calibration (Liu and Pui, 1974) and the measurement of 

submicron aerosol size distributions (Knutson, 1976; Hoppel, 1978; Fissan et al., 1982; 

Plomp et al., 1982; Scheibel et al., 1983; Kousaka et al., 1985). The use of two or more 

DMAs in series, referred to as a tandem differential mobility analyzer (TDMA) system, 

has, also, been made to probe intrinsic particle properties. The TDMA technique can be 

used for measuring the difference broadening of the DMA transfer function. Rader and 

McMurry (1986) demonstrated that the TDMA technique is extremely sensitive, as they 

measured diameter changes with a precision of about 0.3%. Moreover, Kousaka et al., 

(1985) confirmed that for ultrafine particles diffusion within the DMAs leads to major 

discrepancies between the TDMA measurements and theoretical predictions of size 

distributions based on the theory of Knutson and Whitby (1975).  

 TDMA measurements have been made for studying deliquescent and hygroscopic 

properties of monodisperse aerosols (Liu et al., 1978), for the reaction rate between 

ammonia gas and sulfuric acid aerosol droplets (McMurry et al., 1983)  and for 

evaporation rates of several organic aerosol materials (Rader et al., 1986b). A TDMA 

system typically consists of five components (cf. Fig. 2.7):  

a. a DMA 

b. an aerosol conditioner 

c. a measuring DMA, and 

d. an aerosol detecting subsystem. 

Monodisperse aerosol particles generated by DMA-1 undergo a size change in the aerosol 

conditioner before entering DMA-2. Size changes occur, for example, as a result of particle 

evaporation, condensation of gaseous species onto the particles, and/or heterogeneous 
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chemical reactions are allowed to occur in the conditioner. In consequence, DMA-2 is used 

to measure the change in particle size that occurs in the aerosol conditioner. 

 

Figure 2. 8. Tandem Differential Mobility Analyzer (TDMA) operation  

 2.3 Instrument Response  

2.3.1 DMA Response 

The DMA has been used for measuring size distributions of aerosols (eg. Knutson 1976; 

Hoppel, 1978; Alofs and Balakumar, 1982; ten Brink et al., 1983). Also, Rader and 

McMurry (1986) have reported the tandem DMA (TDMA) measurement technique, for the 

cases of measuring growth or evaporation rates of monodisperse aerosols. While the above 

mention applications used the non-diffusing transfer theory, Stolzenburg (1998) take into 

account the diffusion effects on the measurement problems. The concentration and the size 

distribution of the aerosol particles exiting the DMA depend on both operating 

characteristics of the DMA, and on characteristics of the aerosol sample. The diameter and 

charge distribution of the classified aerosol are defined as              number of 

particles per unit volume entering the classifier with charge    and diameter in the range 

   and        , and            number of particles per unit volume entering the 

classifier with electrical mobility in the range    and       , respectively (Stolzenburg, 

1988). Thus, in combination with the DMA transfer function,  , (eg. Stolzenburg (1988), 
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Eq. 2.69) the mobility distribution exiting the DMA is given by the relation:  

  

  
                , where     is the dimensionless electrical mobility, which equals to the 

number of particles per unit volume exiting the classifier with electric mobility in the range 

   and       . We note that         can be reduced to a size distribution function 

multiplied by various size dependent factors characterizing the aerosol system upstream of 

the classifier, e.g. fraction charged, transport efficiency.  

In most cases        is a much narrower function than        
  

  
        such that the 

behavior of the output distribution is dominated by characteristics of the classifier transfer 

function. Thus, effects of the shape of the input distribution on the output distribution can 

be treated as perturbations of this basic behavior. For example, if we consider the base case 

of a flat input distribution, i.e.                    , then the output distribution, i.e.,  

        is a scaled form of the transfer function.  

The classification system includes, a measuring subsystem, e.g. condensation particle 

counter (CPC), aerosol electrometer (AE), optical particle counter (OPC), which produces 

a measurable response that is proportional to aerosol number concentration. A response 

function can be defined for the measuring subsystem as:           response of 

receiving subsystem (sensor) per unit concentration of particles received of charge    and 

diameter   .  

Thus, what is, typically, measured in such a DMA measurement system (Fig. 2.8) is the 

integrated response of the measuring subsystem given by (Stolzenburg, 1988): 

              
 

 

  

  
                           (3) 

as a function of the voltage applied to the central rod,    .  

Let      denote the response of the sensor as a function of the rod voltage, for a CNC, 

the response has units of     , while for a current meter type sensor has units of amperes. 

For an CNC, the response to a single particle is independent of the number of charges on it, 

while for the electrometer the response is weighted more heavily towards the multiply 

charged particles.  

The factor relating sensor response to the flux (particles/sec) of the particles is equal to: 
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   , and            (4a) 

   
 

  
              (4b) 

for the current meter and the CNC, respectively, where    is the number or elementary 

charges (Alofs and Balakumar, 1982). 

Thus, Eq. (3) can be written to its equivalent form: 

                                      
 

 
   

 
      (5) 

 

Figure 2. 9 DMA Aerosol Measurement System 

2.3.1 TDMA Response 

The aerosol introduced at the TDMA system (Fig.2.7) is characterized by the mobility 

distribution,         , Then, DMA-1 extracts a nearly monodisperse segment about the 

centroid mobility    
  according to the transfer function           . The size of the 

particles exiting DMA-1 is changed, e.g. by condensation/evaporation, in the aerosol 

conditioner that has a penetration efficiency       , and transform the mobility of the 

particles according to the function            . Then, the conditioned aerosol is 

reclassified in DMA-2 according to the transfer function            having centroid 

mobility    
 . Finally the aerosol concentration exiting the second DMA is determined by 

the sensor with response function       . Consequently, the signal produced by the 

TDMA system is the integrated responses of the aerosol detector as a function of the 

DMAs voltage settings, i.e. 

                
 

 

   

   
                

   

   
                      .  (4) 
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2.4 Aerosol Measurements Data Inversion 

2.4.1 Inversion: The Basic Mathematical Problem 

Physical theories allow us to make predictions: given a complete description of a 

physical system, we can predict the outcome of some measurements. This problem of 

predicting the result of measurements is called the modelization problem, the simulation 

problem, or the forward problem. The inverse problem consists of finding an unknown 

property of an object from the actual result of some measurements of this object to a 

probing signal (Tarantola, 2005; Ramm, 2005).  

For aerosol size spectrometers instrument response is analogous to the size distribution 

being measured. The data inversion problem then amounts to determining which 

distribution caused a given measured response in an instrument the linear response curve 

of which is known. In general, a finite number of instrument responses is obtain, so that the 

problem can be declared as (Crump and Seinfeld, 1982):  

Find the size distribution   such that 

                        ,      (5)  

where   is the unknown size distribution,    the i
th

 datum, and     the i
th

 instrument 

response linear functional.  Problem (5) is called well posed if it is uniquely solvable for 

every   and the solution   varies continuously with the data  . A well-posed problem is 

characterized by the following three conditions (Crump and Seinfeld, 1982):  

a. For every   there is a solution  . 

b. The solution   is unique. 

c. The solution   is stable. 

The solution f is called stable if, for any sequence of perturbations in y tending to zero, the 

corresponding sequence of perturbations in the solution f also tends to zero. If the 

condition a. fails the problem is overconstrained and if condition b. fails is 

underdetermined. Even if a-c hold for the system of problem (5), it may happen that small 

perturbations in the data   cause relatively large disturbances in the solution  , then the 

problem is called ill-conditioned, i.e., that makes clear an extreme insensitivity of the data 

to large perturbations in the solutions.  

In general, the linear functionals    are linear integral operators of the Fredholm type, 

that is,                 . As, almost any function that oscillates rabidly enough can 
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be added to a solution of Eq. 5, without affecting it‘s validity, it can be concluded that Eq. 

(5) itself is not sufficient to afford solution of the inversion problem, but some additional 

information will be needed to be used in order to obtain acceptable solutions. The above 

mentioned points are general characteristic of ill-posed problems. Tikhonov and Arsenin 

(1977) investigate such problems and states what criteria should be used for their solution. 

Inversion problems arise repeatedly in the determination of aerosol size distribution, as 

a particular channel of the aerosol spectrometer will collect particles from multiple size 

ranges. A degree of indeterminacy is introduced into the measurements, so that a 

continuous size distribution has to be estimated from a set of discrete measurements, each 

of which is influenced by all values of the unknown distribution, i.e. the distribution 

function must be found, as it were, from a tangled set of combinations of measurements 

(Twomey, 1977). 

In the case of aerosol size distribution measurements with a mobility analyzer the 

general inversion problem (Eq. 5) can be written as: 

                
 

 
                      (6) 

where    are the discrete measurements points,       the unknown size distribution 

function,    is a size parameter,    is the kernel function of the i
th

 instrument channel (i.e. 

the instrument response), a and b are the size limits within which the size distribution lies, 

and    is the instrument error in that channel.  

Equation 6, the Fredholm integral equation of the first kind, can be approximated by a 

sum using numerical quadrature so that 

  

               
 
       

               
 
       

 
               

 
      

       (7) 

where the  interval [a, b] has been divided into m subintervals, and                 .  

Consequently, we have a system of N equations in m unknowns, the unknowns being the 

values of   at the midpoints of the m subintervals. Eq. 7 is a set of linear equations but 

routine techniques for solving systems of linear equations cannot be applied on this 

problem. The equations in Eq. 7 are merely approximate not only because of the finite 
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error in representing an integral as a discrete sum but also because of the errors in 

measurement.  

An equivalent form of Eq. 7, in matrix notation, is       , where   and   are 

    vectors,   is a     vector, and   is a     matrix. A simple matrix inversion 

(ignoring the error terms) will lead to an estimate of  , i.e.        . But, for a 

straightforward inversion procedure to be applied, the linear equations must be 

independent of each other. If any subsets of equations in Eq. 7 are dependent on one 

another, i.e. one equation can be expressed as a linear combination of the other equations, 

then the matrix   becomes singular and the inverse does not exist. For many indirect 

measurements encountered in aerosol science and elsewhere, the equations are ―quasi-

dependent‖ on each other, so that the matrix is ―nearly‖ singular and     becomes very 

large. This quasi-dependency arises due to the large degree of overlap between the kernels 

over the region of interest. This overlap reflects the fact that particles of a certain size can 

be counted on more than one channels. Then each additional measurement contains 

progressively less new information and therefore is, to some extent, redundant. 

As pointed out from Twomey (1977) and  Kandlikar and Ramachandran (1999) in 

function space, the measurements of              
 

 
 can be treated as the projections of 

the unknown       on the set of axes      ,      , etc. If the kernels      ,      , etc 

were completely independent of each other, they would be mutually orthogonal. However, 

since they are not completely independent, the axes formed by them are skewed (Figs. 2.9 

a and b, adapted from Twomey, 1977) show a simplified representation of this situation 

with only two such axes,      ,      . 
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The orthogonality of the axes becomes important due to the measurement error. If there 

is some measurement error, e.g. shaded region in Fig. 2.10(a), then it translates into an 

uncertainty in the solution        indicated by the darker area. However, if the axes are not 

orthogonal as in Fig. 2.10(b) then the same amount of measurement uncertainty leads to a 

much larger solution uncertainty. The error in the solution is given by the relation       

                  . It indicates, as already mentioned, that the solution is 

unstable in that a small error in measurement can lead to a very large error in solution due 

to the large values of    , and thus, results to a ‗ill-posed‘  problem. 

The skewness in the axes can be overcome by orthogonalising the kernels       using 

the Gram-Schmidt procedure (Twomey, 1977) or some other procedure so that the solution 

      can be represented as a sum of orthogonal functions. If              are the 

eigenvalues of   then,   is singular if at least one eigenvalue is equal to zero, while is 

near-singular in the case that some eigenvalues are very close to zero. Then the solution 

can be written as            
      

 
    , where    are the orthogonal eigenvectors of 

 ,    are coefficients of the eigenvectors. As, the reciprocals of the small eigenvalues are 

very large, and if there are any errors in the measurements,  , these errors will be 

extremely magnified by these reciprocal eigenvalues, so that the solution   will have a 

very large error in it. Thus, orthogonalisation by itself also does not solve the problem of 

ill-posedness. In fact, the small eigenvalues of   just reflect the high degree of 

interdependence among the kernel functions. 

Figure 2. 10 Effects on errors on (a) an orthogonal system of kernel functions, (b) a 

skewed system of kernel functions (adapted from Twomey, 1977) 
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Another problem to be taken into account in finding the size distribution measurement 

is that in most applications in aerosol science, the system of equations in Eq.7 is 

underdetermined with the number of measurements less than the number of unknowns, i.e. 

    . Thus, even in the absence of measurement error, there is no unique solution. 

Many solutions satisfy the same set of measurements. Thus, there is not enough 

information to solve the problem uniquely. In order to select one among a multitude of 

solutions, additional information has to be added to the system. This is done in the form of 

a priori constraints on the solution. To some extent, these constraints are arbitrarily 

imposed, and hence care should be taken to ensure that the constraints are physically 

justifiable. 

In the following sections, we will describe a selection of techniques that siege to give 

solution to this problem in different ways with differing levels of success. The methods 

include linear approaches such as least-squares solutions, regularisation, and 

decomposition techniques that use basis functions, non-linear approaches that use gradient 

search methods, extreme value estimation, and Bayesian methods. In general, any 

technique that proposes to solve an ill-posed problem will have to provide a scheme by 

which 

a. one among a multitude of possible solutions is selected as ―the solution‖, 

b. error magnification is minimized, and 

c. the chosen solution provides a good fit to the data. 

 

2.4.2 Aerosol Data Inversion Techniques  

Several different techniques are in use for reconstructing aerosol size distributions from 

experimental data. Each of these techniques has certain deficiencies, and indeed, it is 

doubtful that any method can fulfill the ideal of perfect reconstruction of a size distribution 

from a limited set of data. A list of inversion methods used in aerosol size measurements is 

presented in Table 2.1. 

Knutson (1976) published the first method for inverting the data from a DMA (with a 

bipolar charger upstream) to obtain aerosol size measurements. The Knutson method 

required various approximations and assumptions which he did not numerically justify in 

his paper. However, the Knutson inversion technique is extremely simple, in that it yields a 

system of linear equations which may be solved recursively. 
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The second inversion algorithm to be published for the Electrical mobility analyzer was 

given by Hoppel (1978). It consists of a successive approximation, in which the first 

approximation to the size distribution is obtained by neglecting the multiply charged 

particles. The first approximation is then used to estimate the number of multiply charged 

particles, and thus obtain a second approximation. The process then repeats until it 

converges. Hoppel provided only a few numerical examples of the accuracy of his 

technique.  

A third inversion technique was published by Haaf (1980). It consists of a trial and error 

procedure in which the response of the Electrical mobility spectrometeris calculated for an 

assumed size distribution, and compared to the actual measured response. The assumed 

size distribution is then adjusted until the difference between the actual response and the 

computed response is a minimum. The inversion method proposed by Haaf is much more 

complicated than that by Knutson or that by Hoppel, and yet in a sense is more familiar in 

that such a procedure is usually required when inverting indirect measurements. Twomey 

(1975) applied a similar iterative procedure to inverting filter transmission measurements 

to obtain aerosol size distributions. 

2.4.2.1 Linear Methods 

2.4.2.1.1 Least-squares solution 

One approach to providing additional information is to overdetermine the problem by 

making the number of unknowns less that the number of measurements. This could be 

achieved by representing the unknown distribution parametrically, e.g. as a bimodal 

lognormal distribution. In such cases one seeks a ―least-square‖ solution that minimizes the 

residual              , which leads to the solution                    . But, 

as the elements of    remains large, they lead to ―catastrophic error amplification‖ (Enting 

and Newsam, 1990). The error in this case, can be calculated as            

                              .  Moreover, the initial guess solution for the 

minimization procedure often determines the final solution, and thus the least-squares 

approaches do not provide any benefit in solving ill-posed problems. Gonda (1984) notes 

that assuming a parametric form for the unknown distribution easily provides a unique 

solution where convergence is achieved by user intervention between successive iterations.  

2.4.2.1.2 Constrained least-squares 

First Phillips (1962) and later Twomey (1963) proposed a constrained least-square 

approach, in which additional information in the form a smoothness constraint is added 
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whereby the chosen solution is the smoothest possible while still restricting the error 

residuals to be within reasonable bounds. The second difference expression         
   

         
  was used as a measure of smoothness, so that the smoothest solution was one 

that minimized it. Even though, the minimization of the second-differences expression has 

become the most commonly employed smoothness criterion, it may not always be the most 

appropriate. Thus, if a solution has several sharp peaks, the second-differences criterion 

might eliminate them altogether; in such cases, a first-difference measure such as 

          
  

    of      
  

    or the deviation from a trial solution   , i.e.,       
   

   
   can be used. Regardless the smoothness criterion the problem can be framed as the 

minimization of      while holding               constant, i.e. the minimization 

of                    , which yields the Twomey-Phillips solution       

              , where   matrix is nearly diagonal and depends on the smoothing 

constraint of choice.  

Twomey (1977) gives the H matrix for a number of different constraints. If   is chosen 

equal to zero, this is equivalent to inverting a near-singular matrix with some very small 

eigenvalues. As   is increased, the smallest eigenvalues are filtered out, and information is 

added to the system which uniquely selects a solution. Rizzi et al. (1982) used this 

approach to retrieve aerosol size spectra from simulated spectral optical depths in the 

wavelength range from 0.37 to 2.2 μm. Small values of   between 10
-4

 and 0.05 provide 

the best solutions where information on the shape of the true solution is retained even if the 

retrieved solution is not well-behaved (i.e. the solution may take on negative values, and 

therefore is non-physical). Higher values of   yield well-behaved solutions; however, in 

such cases the first-guess solution has a strong effect on the final solution. They also 

determined that the techniques tolerated a maximum error of 5% in the measurements 

before the retrievals were severely degraded. Cooper and Spielman (1976) proposed that 

instead of suppressing ill-conditioning by smoothing, one should impose only physical 

constraints on the solution, e.g. that the solution be non-negative and the area under the 

solution curve be unity. However, as Lesnic et al. (1995) showed this is not enough by 

itself to reduce ill-posedness and we need both physical constraints and smoothness 

constraints.  
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2.4.2.1.3 Tikhonov regularisation  

A regularisation method is a method of overcoming ill-posedness by replacing the 

problem with a ‗nearby‘ well-posed problem whose solution approximates the required 

actual solution, but which is more satisfying than that obtained by simple least-squares 

regression. Two additional pieces of information are supplied by the analyst: a smoothness 

ctiteria  , and a regularisation parameter,  , which controls the degree of smoothing that is 

applied, and hence the level of filtering to eliminate noise in the solution. The best known 

regularisation method is that of Tikhonov and Arsenin (1977), which finds a solution to the 

minimization problem   
               

 
 

     
                

   ,    (8) 

where the first term,  , is a residual that measures the agreement of a solution with 

measured data while the term   is a regularizing term, and λ is the regularisation parameter 

and       is the expected value of the error in the ith measurement.   and   are functions 

of   , since the choice of the regularization parameter determines the degree of smoothing 

and the agreement with measurements.  

Following Hansen (1992) and Hansen and O‘Leary (1993),       can be set equal to:  

a) the norm of the unknown function itself, i.e.          
 
  

 

 
 

b) the norm of the derivative or second derivative, i.e.            
 
  

 

 
 

c) the Shannon-Jaynes entropy, as the maximum entropy method calls (Shannon and 

Weaver, 1962)                    
 

 
.  

As the choices (a) and (b) for   do not quarantee the non-negativity of the recovered size 

distribution a separate constraint of non-negativity has to be imposed. However, choice (c) 

provided an intrinsically positive size distribution. Yee (1989) used this approach to 

reconstruct size distributions from noisy diffusion battery measurements, and found that 

the method could even retrieve size distributions that were very sharp, i.e. Dirac delta 

functions.  

These optimization methods can be viewed as minimizing   subject to keeping the size 

of the residual less than some fixed value, or conversely minimizing the residual subject to 

keeping   less than some fixed value. Lesnic et al. (1995) used the minimization of the 

norm of the first derivative subject to the constraints that   be less than some prescribed 

quantity, and the size distribution be non-negative. 
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For selecting the proper value for   a number of approaches have been suggested: 

a) Zeroth-order regularisation. This approach provides a solution that matches the 

measurements to just within expected experimental error. For example, 

Ramachandran et al. (1996) used this approach for handling personal cascade 

Impactor data by setting   
               

 
 

     
 

 

   
   , where   is the number of 

measurements.  

b) Generalised cross-validation (GCV). A method proposed by Wabba (1977) and 

Golub et al. (1979) and used for aerosol inversion problems by Crump and 

Seinfeld (1982). When the approach of GCV is used if any measurement    is 

left out and a solution        is calculated by minimizing Eq. 8, then 

               
 

 
 should be closer to    than for other values of  . As a 

measure of closeness can be used a data prediction error function, i.e.      

 

 
                   

 

 
 
 

 
        , where the weights       are chosen so 

that      has the same minimizing value of   as the mean square true prediction 

error 
 

 
                              

 

 

 

 
 
 

 
   , where         is the 

solution minimizing Eq. 8 and      is the true solution (Wabba, 1977). Hansen 

and O‘Leary (1993) stated that the disadvantage of this approach is that the 

GCV function can have a flat minimum and thus it may be difficult to be located 

numerically. Hence, they proposed the L-curve method. 

c) L-curve method. The L-curve is a plot of      vs     , as they are defined in 

Eq.8.      measures the agreement of a solution with measured data, thus when 

     is alone minimized, the agreement of solution with data becomes 

implausibly good, but the solution becomes unstable.      is a stabilizing 

functional and is a measure of smoothness of the solution independent of the 

actual data. Figure 2.10 shows the trade-off between       and     , which 

produces an empirically observed L-shaped curve. For small values of  , the 

curve is almost vertical and solutions are unstable because they depend almost 

entirely on a close match with data so that experimental errors are amplified in 

the solutions. For large values of  , the curve is flat and solutions are over-

smoothed such that while the effects of measurement errors are filtered out, 

there is also some addition of constraint-generated information. Optimum 
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solutions lie near the corner of the L-curve. In this region, the solution strikes a 

balance between smoothness and fidelity to measurements. Lloyd et al. (1997a) 

use the L-curve method for analyzing diffusion battery data, and show that the 

solutions obtained are superior to those obtained by using the discrepancy 

principle. If the discrepancy principle is used, the results are dependent on the 

estimate of experimental error, whereas the L-curve method yields results that 

are independent of experimental error. A potential drawback to the L-curve 

method is that it is not convergent when the solution is ―rough‖ (Vogel, 1996), 

i.e. the size distribution has a lot of peaks and valleys. Hansen (1992) shows that 

the L-curve criterion is similar to GCV and the discrepancy principle and 

whenever GCV finds a good value of   , so does the L-curve method. However, 

the L-curve has several advantages over GCV: calculation of the corner of the L-

curve is a standard numerical problem, and the method is quite able to handle 

correlated measurement errors which GCV cannot. 

 

 

Figure 2. 11  The L-curve showing the trade-off between smoothness of solution and agreement of 

solution with measurements (adopted from Kandlikar and Ramachandran, 1999). 

2.4.2.2 Non-Linear Iterative Methods 

In this class of methods, a good initial solution,     , usually an educated guess, is 

refined repeatedly by multiplying the solution by correction factors                  so 

that the final solution is given iteratively by                      , where n is the 

iteration number. 
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2.4.2.2.1 The Chahine (1968) method  

Chahine (1968) proposed a method firstly used for obtaining atmospheric temperature 

profiles and later for obtaining particle size distributions from light extinction 

measurements (Grassl, 1971), light scattering measurements (Santer and Herman, 1983) 

and for analyzing distributions of fractal objects from light scattering (Ferri et al., 1989).  

In this method, an initial solution,     , is chosen such that it is always positive. The 

calculated measurements,        
        

 

 
  are compared with the actual measurements 

  , and adjustments are made to         in successive iterations so as to minimize each of 

the residuals,         
           

 

 
 
 

. In the Chahine algorithm the largest change in 

       
        

 

 
 can be caused by the least perturbation to         if the perturbation 

occurs at the point where       attains its maximum.  

2.4.2.2.2 The Twomey (1975) method and modifications to it 

Twomey‘s method (1975) overcome the problem of unrealistic, high-frequency 

oscillations in the Chahine solution, while retaining the positively constrained solutions 

and having no limitation on the number of points at which the solution is corrected. An 

initial guess solution is iteratively multiplied by small multiples of the kernel functions 

which are proportional to the ratio of the actual to calculated measurements, i.e. 

                
   

        
                 , 

 where    
   

  
  

        
          

 
   

   . In each iteration, a total of       corrections 

are made, as            is calculated for all    (    values) for each of the 

measurements (    values). If relative smooth kernels and relative small values of   
   

 

are assumed, then            is written as:  

                 
   

            
   

             
   

        
       . 

This approach was used by Hitzenberger and Rizzi (1986) to retrieve size distributions 

from measured extinction coefficients at multiple wavelengths. Since the solution is a 

linear combination of the kernel functions, the high-frequency oscillations of the Chahine 

algorithm can be avoided. However, if the kernel functions themselves are not smooth or 

are oscillatory (e.g. in light scattering), these patterns will be seen in the solutions as well. 

Moreover, we cannot always neglect higher-order terms so that we may have terms 
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involving products of kernel functions in the solution. These product terms will magnify 

any oscillations in the kernels and cause large, artificial oscillations in the solution. 

Markowski (1987) used a smooth initial guess for the Twomey algorithm. The output 

solution was then smoothened further by replacing each value f (  ) with the weighted 

average of all points in the neighbourhood: f (    ), f (  ), and f (    ). The smoothing is 

continued until the calculated measurements using the smoothed solution and actual 

measurements differ from each other sufficiently, when the solution is used as an input to 

the Twomey algorithm for iteration. This procedure is repeated until the solution is 

sufficiently smooth (as measured by the average absolute value of the second derivative of 

the solution). Thus, the modified Twomey method again seeks a compromise between 

agreement of the solution with the data and an arbitrary constraint (smoothness of the 

solution). This approach has been used widely in the aerosol field, most recently to obtain 

size distributions from measurements of spectral time-dependent radiation when aerosol 

particles are heated up using a laser and allowed to cool down by molecular heat 

conduction (Roth and Filippov, 1996). 

An alternative modification of Twomey‘s method is that proposed by Winklmayr et al. 

(1990). Instead of smoothing the solution post-facto, they smooth the kernel functions in 

the Twomey algorithm beforehand, i.e. instead of using the actual kernel functions,      , 

they use                  
 
, where the exponent r ranges between 0.3 and 0.7. They 

also use a very smooth initial guess solution, and use a chi-square statistic, 

 
 

 
  

            
 
    

     
 

 

 
   , as a stopping criterion for the iterations. 

2.4.2.3 Extreme Value Estimation 

The extreme value estimation (EVE) method proposes that the set,  , of all solutions 

that produce a ―well enough‖ fit is considered the solution (Paatero, 1991). A likelihood 

function         gives the probability or likelihood of a possible   being the cause of the 

measurements  . Best-fit methods try to maximise the likelihood function. If the error     

on   is normally distributed with zero mean and variance   , then maximizing the 

likelihood function is equivalent to minimizing the least-squares term given by         

  
               

 
 

     
 

 

 
   .  Thus, the solution     if                 , where the 

quantity    is a user-specified parameter, and determines the size of the set  , i.e. larger 
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   more values of   will be included in  . As the entire set   is of limited practical value, 

a scalar functional as        
 
    is estimated, by forming a confidence interval 

           . Even though the idea of a set of acceptable solutions is more attractive than 

one prescribed best solution, in practice this technique is not much different from the least-

squares approach with some relaxation of the best-fit criterion. Maximizing the functional 

  is akin to maximizing the norm of the unknown size distribution.  

2.4.2.4 Bayesian Methods 

Another class of techniques that solve inverse problems through statistical analyses of 

repeated solutions of the forward problem was introduced by Ramachandran and Kandlikar 

(1996). Bayesian statistics requires analysts to make explicit prior probabilistic judgments 

on physical parameters. From a Bayesian perspective, a measurement serves to refine 

previous knowledge of parameters by modifying these prior probability distributions. The 

process of refining previous knowledge of the parameters is also called updating and 

invokes the classic Bayes theorem. If the physical quantities of interest (e.g. geometric 

mean and variance of a lognormal distribution), are represented by a vector  , and the 

measurement process furnishes numbers represented by a vector  , then the Bayesian 

expression for the updated probability distribution of   is            
            

    
, where 

      is the probability distribution of   prior to making any measurements,         is the 

likelihood that given the true value   the measurement y is observed,      is the 

probability that the measurement   is observed, and            is the updated probability 

that the physical quantity of interest is  , given that measurements   are observed. In 

Kandlikar and Ramachandran (1999) the Bayes formulation is combined with Monte Carlo 

simulations to provide the updated probability distribution of the physical quantities being 

determined given assumptions on probability distributions of   prior to measurement, and 

the observations on the model output   with their corresponding expected experimental 

errors. The updated probability density            is used to determine the best estimates 

of  .  

Voutilainen et al. (2000) introduced a statistical inversion method of aerosol size 

measurement data, in which both the observations and the unknown parameters are treated 

as random variables. They construct a realistic posterior model for the aerosol size 

distribution function by using the Baye‘s Theorem, assuming that the measurements obey 

Poisson statistics and that the solution is a smooth nonnegative function.  
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2.4.3 Inversion of Tandem DMA Measurements 

The measurement signal of a TDMA, i.e. the measurement distribution function (MDF), 

is the particle concentration at the TDMA outlet related to a size-changing function set at 

the instrument. As the MDF is only a skewed and smoothed integral transform of the 

particle's actual growth factor probability density function (GF-PDF) an inversion 

algorithm has to be applied to the MDF of TDMA measurements to retrieve the GF-PDF. 

 TDMA data analysis approaches seek to determine the mean size-change of the sample, 

to provide the number fractions of particles in different GF ranges and to retrieve the 

correct shape of the GF-PDF in detail. The simplest method is to use the MDF without any 

data inversion to determine integral properties of the GF-PDF (e.g. Liu et al., 1978; 

Weingartner et al., 2002), but, this approach does not fulfil any specification expect for 

samples exhibiting monomodal growth with limited spread between individual particles, 

where the MDF can be used to determine the mean GF. A second approach is to invert for 

the smearing and skewing effect of the second DMA only, in order to recover the particle 

size distribution after treatment (e.g. Cocker et al., 2001; Stratmann et al., 1997; 

Voutilainen et al., 2000). This approach fulfils all specifications because the particle size 

distribution after treatment resembles the GF-PDF except for some smoothing caused by 

the finite width of the size corresponding to particles selected with the first DMA. The 

third class of methods aims to recover the actual GF-PDF by inversion of the MDF using a 

complete TDMA forward function (e.g. Cubison et al., 2005; Stolzenburg & McMurry, 

1988). This class of methods satisfies all criteria as closely as possible within the limits 

imposed by the measurement uncertainties and inversion algorithm itself.  

The TDMAfit algorithm (Stolzenburg & McMurry, 1988) is the most widespread 

inversion approach. It describes the GF-PDF as a superposition of multiple Gaussian 

distributions, whereas the mean GF, standard deviation and number fraction in each 

Gaussian mode are varied until the observed MDF is reproduced by sending the resulting 

GF-PDF through the forward function of the TDMA. However, convergence of fitting 

multiple modes is not robust in cases with largely overlapping modes or shoulders, and 

successful convergence may depend on the initial guess. This makes automated data 

analysis of large data sets difficult.  

The optimal estimation method (OEM), introduced by Cubison et al. (2005), uses a 

quasi-inverse matrix of the TDMA kernel function in order to retrieve the values of the 

GF-PDF at discrete bin positions. This method is very efficient, returning unambiguous 
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results for given retrieval bins and provides tools for a thorough uncertainty analysis. 

However, constraints such as keeping the GF-PDF positive cannot be applied because it is 

a linear method. This can lead to oscillations with alternating positive and negative values 

in the retrieved GF-PDF, which propagate outside of the support of the MDF, if the chosen 

resolution is too high. Gysel et al. (2009) develop an alternative TDMA data inversion 

approach, which is a robust and automated data inversion algorithm, which has 

successfully been tested and applied to large HTDMA data sets in recent laboratory and 

field studies (Allan et al., 2008; Gysel et al., 2007; Meyer et al., 2008; Sjogren et al., 

2008). 
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Table 2. 1  Inversion Techniques 

Inversion Technique References Constraints /a priori Information Comments 

I. Linear methods 

   

1. Least-squares 

 

None 

Very unstable in presence of measurement 

error 

2. Constrained least-

squares Philips (1962), Second difference, Solution could take on negative values 

 

Twomey (1963), 

first difference or deviation from trial 

solution 

 

 

Twomey (1977), is minimised 

 

 

Rizzi et al. (1982) 

  3. Tikhonov 

regularisation Tikhonov and Arsenin (1977), 

  

 

Hansen (1992) 

  

 

Hansen and O'Leary (1993) 

  a. Crump and Seinfeld (1982) Norm of second derivative minimized 

 b. Yee (1989) Shannon - Jaynes entropy maximised Intrinsically positive solution 

c. Lesnic et al (1995) 

Norm of first derivative minimised; 

positivity of solution 

 

d. Selection of λ Wahba (1977), 

Minimise the generalized cross validation 

(GCV) function 

GCV function can have a flat minimum and 

can be difficult to locate 

 

Golub et al. (1979), 

 

 

Crump and Seinfeld (1982) 

 

e. Ramachandran et al. (1996) Discrepancy principle 

Computationally simple, but can oversmooth 

solution 

f. Hansen (1992), L-curve method Reliable but computationally 

 

Hansen and O'Leary (1993), 

 

intensive 

 

Lloyd et al. (1997a) 

  



Literature Review 

 

42 

 

Table 2. 1 Continued 

Inversion Technique References Constraints /a priori Information Comments 

4. Synthesis of basis 

functions 

   a. Eigenvalue 

decomposition Twomey (1963), Disregard of replace Measurements chosen to remove singularity 

 

Twomey (1975), problematic eigen values using filters 

 

 

Capps et al. (1982) 

  b. Curry (1989) Smoothness constraint 

 c. Second derivative 

expressed as sum of 

orthogonal functions 

Ramachandran and Leith (1992) Norm of second derivative minimised 

Intrinsically positive solution 

4. Synthesis of basis 

functions    

a. Eigenvalue 

decomposition Twomey (1963), Disregard of replace Measurements chosen to remove singularity 

 Twomey (1975), problematic eigen values using filters  

 Capps et al. (1982)   

b. Curry (1989) Smoothness constraint  

c. Second derivative 

expressed as sum of 

orthogonal functions 

Ramachandran and Leith (1992) Norm of second derivative minimised 

Intrinsically positive solution 

d. Singular value 

decomposition Bertero et al. (1985, 1986),  

Disregard or replace problematic 

singular values using filters 

Allows choice of measurements to avoid 

singularity; smoothing 

 Arridge et al. (1989),   

 Viera and Box (1985, 1987)   
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Table 2. 1 Continued  

Inversion Technique References Constraints /a priori Information Comments 

II. Non-linear methods 

   

1. Chahine method Chahine (1968), Initial guess solution is positive 

Final solution always positive. High - 

frequency oscillations or choppiness 

in solution 

 

Grassl (1971), 

  

 

Santer and Herman (1983), 

  

 

Ferri et al. (1989) 

  2. a. Twomey's method Twomey (1975), Initial guess solution is positive 

 

 

Hitzzenberger and Rizzi (1986), 

  b. Markowski (1987), Initial guess solution is positive. 

Smoothness constraint  

 

Roth and Filippov (1997) 

 c. Winklmayr et al. (1990) Use smoothed kernel fuctions 

 III. Extreme value estimation Paatero (1991) 
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Chapter 3. Methodology 

3.1 Methodology  

Aerosol size distribution measurements require having the appropriate instrumentation 

(hardware) and also the theoretical framework (models) of the individual system 

components, as shown in Figure 3.1. As already, mentioned in § 2.???, the basic 

components of an electrical mobility spectrometer are the charger, the classifier and the 

counter. Part of this study focuses on the modeling of the transfer function of a Multiple 

Monodisperse Outlet DMA, including the derivation of a theoretical framework towards 

predicting the response of an aerosol size measurement system consisting of a Dual-MO 

DMA. After these models are finalized, an inversion algorithm will be developed for 

retrieving size distribution data from SMPS and TDMA measurements. Herein, we present 

the derivation of the MMO-DMA transfer function and the Knutson inversion method, 

which will be the basis for the development of a novel inversion code for the MMO-DMA. 

 

 

 

 

Figure 3. 1 Schematic diagram of the Methodology  
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3.2 Current Achievements and Future Work Plan 

The transfer function of the MMO-DMA for non-diffusing particles,     
, can be 

written in dimensionless form as: 

    
 

 

         
      

              
           

        
                

         
,   (9) 

where     
      

    
    

  and    
   

   

   
   

 are the dimensionless flow parameters that 

correspond to the ith exit (      
     

    
 the aerosol, sample, sheath and excess flow 

rate at the ith exit), and     
 

  

    

  the dimensionless variable defined as the ratio of the 

particle electrical mobility to the midpoint electrical mobility for each monodisperse-

particle outlet (Giamarelou and Biskos, 2011).    

The equation above is similar to that derived by Stolzenburg (1988) for the single 

monodisperse-particle outlet DMA, with the difference that all the non-dimensional 

variables correspond to the ith exit as described at the above relations. Using the derived 

transfer function one can optimize the design (i.e. the number and the location of the exits) 

of any MMO-DMA, and invert the data of mobility spectrometers that employ such 

DMAs.  

When the particle diffusion is taken into account the transfer function of the ith exit of 

the MMO-DMA for diffusing particles is given by (Giamarelou and Biskos, 2011) 

   
 

  

          
    

    
 

 
         

    
    

    
 

 
       

    
  

                                      
    
 

 
       

    
    

    
 

 
         

    
  

.   (10) 

where    is the standard deviation of the transfer function. Here   is the integral of the 

error function defined as                          
 

  

 

 
        , where the 

standard error function is given by          
 

  
           

 

 
 .   

Once, the transfer function of the MMO-DMA is ready, and the response of the 

spectrometer or the TDMA system employing such DMAs is modeled, the algorithm for 

inverting the data from mobility spectrometers and TDMA systems when such DMAs are 
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employed. A first approach for the derivation of the inversion code will be the one basd on 

the Knutson (1976_ inversion method, described below.  

 

The DMA is usually operated at high resolution, so that nonzero values of transfer 

function,  , occur only in a very narrow range of electrical mobility,   , centered around 

centroid electrical mobility,   
 . Knutson (1976) therefore assumes that      and       are 

approximate constant over the corresponding range of electrical mobilities, thus the 

response of the sensor is given by:  

              
          

 

 
   

    , where    are the values of   corresponding to 

  
 . The size of those particles leaving the DMA with the same number of charges, i.e.,  , 

is nearly equal to   . Therefore, the sensor response can be written on the equivalent form   

     
     

     
       

          
            , where       

   

  
 
  

 and    is the 

mobility of singly charged particles of size  . Knutson (1976) reports that for particles 

larger than 0.5 μm four terms are sufficient: 

     
     

     
          

        
     

        
        

   , where   denotes the ith voltage step. 
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Chapter 4. Summary and Timeline 

Measurements of mobility size in tandem with other properties enable a far more 

detailed characterization of aerosol physical and chemical properties than can be achieved 

with one measurement only. Such measurements can establish relationships between 

different measurements of size, can offer information on particle properties such as shape, 

density, hygroscopicity, volatility and reactivity.  

The aerosol measurement signals obtained from a electrical mobility spectrometers or 

TDMA systems required inversion algorithms in order to retrieve the size distribution 

function of the sample aerosol and the measured intrinsic properties, respectively. Prior, 

the response of the system has to be modeled taking into acount the charge distribution, the 

transfer function of the classifier (or classiers in the case of TDMA systems), and the 

counter efficiency.  

As shown in Figure 4.1, this research has started in November 2009, with the study of 

the DMA (and the TDMA) transfer function and resolution, which was the base for the 

development of the MMO-DMA transfer function (first paper, submitted on March 2011, 

at Aerosol Science and Technology). The next target is the optimization of a MMO-DMA 

design with two monodisperse outles (second paper, to be submitted by July 2011). In 

parallel, the instrument response of an SMPS and a TDMA that will include this newly 

developed MMO-DMA are studied with the objective of developing the inversion 

algorithms for interpreting the measurements from these systems. The modeling of the 

SMPS and the TDMA response is the intermediate step for the development of the 

inversion code (third paper January 2012), that will enable analysis of the hygroscopicity 

and volatility TDMA measurements that are already underway (November 2012; fourth 

paper). 

 

 

Figure 4. 1 Research Timeline 
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